ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES

A Survey of Nontimber Forest Products and their Conservation Status in the Gimbo District, SNNPR, Southwest Ethiopia

By Fisseha Asmelash

Addis Ababa July 2008

www.manaraa.com

ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES

A survey of Nontimber Forest Products and their Conservation status in the Gimbo District, SNNPR, Southwest Ethiopia

A thesis submitted to the School of Graduate studies of the Addis Ababa University in partial fulfillment of the requirements for the Degree of Master of Science in Biology (Botanical Sciences)

By Fisseha Asmelash

Addis Ababa July 2008

ACKNOWLEGMENTS

This research, beyond my effort and my advisors' effort, was a result of many other individuals and organizations input. SOS sahel/UK, Ethiopia and the A.A.U are the most important organizations in that they budget for the study. There are still other organizations like; Bonga Zone Finance and Economy Bureau, Bonga Zone Agricultural & Rural Development Bureau, Farm Africa and the Bonga research center that contributed field equipments, secondary data and valuable information. The National Meteorological Agency also provided me the climate data of the study site free of charge. Therefore, I would like to thank all of the above-mentioned organizations for the contributions they made for the realization of this thesis.

The most important individuals that I would like to thank are also; Ato Feyera Abdi (country director of SOS sahel/UK, Ethiopia) for accepting my research proposal and for the expertise advice he provided me during the early phase of this thesis, my advisors Dr. Tamrat Bekele and Dr.Ensermu Kelbessa for their willingness to be my advisors, for providing me with every support and advise I asked for and for correcting and editing my draft papers, Ato Lema Dinku (team leader of SOS sahel/UK CIP project,Bonga) and the rest of the staff at CIP, Bonga for their support during the data collection and for providing me with the required finance on time.

I would like also to thank Ato Solomon Hailu and Ato Ekubay Bekele (owner of 460 Restaurant) for making my stay in the forests of Bonga more enjoyable in that Ato Solomon provided me with sleeping bag and Ato Ekubay provided me accommodation for some days while in the field. The likes of Mengiste Kindu, Dagne Yebeyen (FRC staffs) also helped me by letting me use their computers and they also were helpful in commenting on parts of the thesis.

Once again, I would like to pass my heart-felt appreciation and respect for both of my advisors Dr.Ensermu Kelbessa and Dr.Tamrat Bekele for being with me all along. The instructors of the AAU, Biology Department, Botanical Sciences also contributed a lot by sharing their knowledge during the course work of my MSc study whose contribution has been immense while carrying out the thesis. Therefore, I would like to thank all my instructors at the Botanical Sciences Stream. Lastly, it is with great pleasure that I am thanking my family, most importantly, my mother, uncles and every one in the family for their financial assistance. Thank you all.

Dedication

To my mother **Romanework Asres** and to my late great grand mother **Kuribachew Woldehanna**

TABLE OF CONTENTS

ACKNOWLEGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	.VII
ABBREVIATIONS	VIII
ABSTRACT	IX
1. INTRODUCTION	1
1.1. BACKGROUND AND JUSTIFICATION	1
2. OBJECTIVES	6
2.1. GENERAL OBJECTIVE	6 6
3. LITRATURE REVIEW	7
 3.1. DEFINING NONTIMBER FOREST PRODUCTS 3.2. COFFEE 3.3. HONEY AND WAX 3.3.1. Honey 3.3.2. Beeswax 3.3.3. Honey and beeswax in Ethiopia 3.4. FUELWOOD AND CONSTRUCTION 3.5. MEDICINAL PLANTS 3.5. 1. Status of the medicinal plants 3.6. SPICES AND CONDIMENTS 3.6.1. Aframomum corrorima (Braun) Jansen 3.7. PALMS 3.7.1. Phoenix reclinata Anthirity 3.7.2. Bamboo 3.8. WILD FOODS 3.9. GUM, GUM RESINS AND RESIN 3.10. OTHER NTFPS 3.10.1. Other products from bees 3.10.2. Lianas 3.11. CHALLENGE IN NTFPS INVENTORY 3.12. THE ROLE OF NTFPS FOR SUSTAINABLE DEVELOPMENT. 	7 9 9 9 9 9 10 10 10 10 11 12 13 13 16 16 17 18 19 20 21 21 21 24
 3.13. THE ROLE OF NTFPS IN SUSTAINABLE PARTICIPATORY FOREST MANAGEMENT (PFM) 1.14. SPECIES RICHNESS AND EVENESS	24 25 26 26 26 26 28
4.1.5. The people	28

4.1.6. Population	
4.1.7. Land use and economy	
4.1.8. Vegetation	
4.2. METHODOLOGY	
4.2.1. Site selection	
4.2.2. Informants selection	
4.2.3. Reconnaissance survey	
4.2.4. Data collection	
4.3. DATA ANALYSIS	
4.3.1. Vegetation data analysis	36
4.3.1.1. Stem density	
4.3.1.2. Importance value index	
4.3.1.3. Forest structure	
4.3.1.4. Population structure	
4.3.1.5. Biodiversity	
4.3.2. Ethnobotanical data analysis	
5. RESULTS	40
5.1 NTEPS RESOURCE BASE OF CIMBO DISTRICT	40
5.1.1 Wood for house construction	
5.1.1. Wood for house construction	
5.1.2. Holley 5.1.3. Wood for farm impliments	
5.1.5. Wood jor jurn impuments	
5.1.4. Beenuve	
5.1.5. Firewood	
5.1.0. Cumpers/runners/ vines siem	
5.1.7. Cojjee	
5.1.8. Medicinal planis	
5.1.9. Knamnus prinioiaes L Herit	
5.1.10. Paims and aracaenas	
5.1.12 E	
5.1.12. Fagaropsis angolensis	
5.1.13. Edible wild plants and fruits	
5.1.14. Mushrooms/Bracket fungus	
5.1.15. Edible wild animals	
5.1.16. Charcoal	
5.1.17. Wild pepper	
5.1.18. Cattle forage	
5.1.19. Catha edulis (Vahl) Frossk.ex Endl	
5.1.20. Dyes	
5.1.21. Ropes	
5.1.22. Fern tree	
5.1.23. Latex	
5.2. NTFPS Preference	
5.3. SPECIES PREFERENCE FOR PLANTS OF SPECIFIC NTFPS CATAGORY	61
5.4. STATUS OF NTFPS OVER THE PAST 5-10 YEARS	
5.5. Result of Market Survey	
5.6. AVAILABILITY OF NTFPS	
5.7. THREATS TO THE BIODIVERSITY AND NTFPS OF THE GIMBO DISTRICT	
5.8. RESULT OF THE VEGETATION DATA	
5.8.1. Floristics	
5.8.2. Stem density	
5.8.3. Abundance, basal area, frequency and importance value index (IVI)	
5.8.4. Forest structure	
5.8.5. Selected trees population structure	
5.8.6. Biodiversity pattern	
* •	

6. DISCUSSION	85
6.1. NTFPs Resource Base of Gimbo District	
6.2. NTFP AND SPECIES PREFERENCE	
6.3. STATUS OF NTFPS	
6.4. MARKETABILITY OF NTFPS	
6.5. NTFPs Availability	
6.6. TREE AND SHRUBS DENSITY	
6.8. FOREST STRUCTURE	
6.9. POPULATION STRUCTURE OF THE IMPORTANT TREE SPECIES	
6.10. Species Diversity	
7. CONCLUSION	95
8. RECOMMENDATIONS	
9. REFERENCES	
10. ANNEXES	

LIST OF TABLES

Table 1: plant parts used as medicine in Ethiopia
Table 2: Nutritional composition of palm wine from <i>Phoenix reclinata</i> (per 100g)17
Table 3: Population and Household Estimates of Gimbo Woreda (a) and of the study
area (b) in numbers, Year July 1, 200629
Table 4: Gimbo district land use/cover (ha)-(a) and the status of Montane forest (ha) in
the study site-(b)
Table 5: List of NTFPs in the Gimbo District
Table 6: List of Plant species in and around Gimbo District used to construct houses43
Table 7: List of plant species in Gimbo District with their medicinal values, ailments,
parts used, recipe, prescription and mode of action
Table 8: Mushrooms and Bracket fungus preference in Gimbo district
Table 9: NTFPs preference in Gimbo District 60
Table 10: Preference ranking for plants suitable for beehive making
Table 11: Preference ranking for plants suitable for house construction
Table 12: Preference ranking for plants suitable for fuelwood
Table 13: Preference ranking for plants suitable for farm impliments
Table 14: NTFPs status in Gimbo District
Table 15: current price of NTFPs with in the Bonga town
Table 16: NTFPs availability in the months of the year versus crops availability
Table 17: List of plant sopecies in the study area 70
Table 18: IVI result in both the PFM and free access forest 76

vi

LIST OF FIGURES

LIST OF ANNEXES

Annex 1. Data Collection tools	08
Annex 2: Names of plant species identified in the area1	13
Annex 3: List of the Key Informants in the study1	17
Annex 4: Meteorological data at Bonga/Kaffa station (source: NMA)1	18
Annex 5: Summery of the partial socio economics of the 86 households surveyed1	20
Annex 6: Market survey result by Taye Bekele (2003), price of NTFPs in Birr1	20

LIST OF ABBREVIATIONS

Abbreviations	Acronyms		
CIP	Community Improvement Programm		
EARO	Ethiopian Agricultural Research		
	Organization		
EFAP	Ethiopian forestry action plan		
EWNHS	Ethiopian Wild Life Natural History		
	Society		
GDP	Gross domestic product		
GOs	Governmental Organizations		
GTZ	Gesellschaft fuer technische		
	Zusammenabeit		
IVI	Importance value index		
m.a.s.l.	Meters above sea level		
MFPs	Minor forest products		
NGOs	Nongovernmental authorities		
NMA	National meterological anegncy		
NTFP	Nontimber forest product		
NTFPs	Nontimber forest products		
OXFAM	Oxford and family		
PFM	Participatory forest management		
PRA	Participatory rural appraisal		
SPSS	Statistical package for social sciences		
SUPAK	Sustainable poverty alleviation in Kaffa		
THPs	Traditional health practices		
WBISP	Woody biomass inventory and strategic		
	planning project		
WCED	World Commission on Environment and		
	Development		

viii

Abstract

The study was carried out to document the NTFPs and assess their conservation status within the Bonga Forest of Gimbo District. Also in the study, by comparing two forest patches one managed by PFM and another freely accessed by the local people, the role of PFM in forest conservation is evaluated. To do all these, ethnobotanical studies, market surveys and vegetation studies were carried out. Ethnobotanical and market data collection were done in accordance with PRA techniques. And vegetation data were collected within 60 sample plots that have a dimension of 30 m X 30 m wherein data for all trees and lianas were recorded. Data for all the shrubs and herbs were also collected within subplots of 5 m X 5 m and 2 m X 2 m respectively. Random walking technique was used to lay the main plots. Vegetation study determined stem density, forest structure, population structures of important tree species, IVI and biodiversity patterns. The study documented 26 NTFPs categories. Out of these, house construction materials, honey and coffee are the most preferred NTFPs. NTFPs; coffee, honey and beeswax, korrorima, wild pepper, carpets made of phoenix reclinata leaves, fruits of Fagaropsis angolensis, Ramnus prinioides leaves and branchs, firewood, charcoal, ropes of different kinds are the NTFPs widely found in the local markets. The status of NTFPs in the study area has reduced over the years and the stutus Fagaropsis angolensis was known to have reduced highly. Student's t-test revealed that of neither total stem density nor trees and shrubs density separately in the forests under PFM and free access differ significantly. This shows that although higher rate of selective logging is evident in the free access forest, there is also high rate of reproduction or regeneration or succession within this forest. The biodiversity pattern of the forests in the study area was found to be high (H'= 4.37 & 4.27) and (E =0.94 & 0.91) in the PFM and free access forests respectively. Preference ranking results shows that Olea welwitschii, Elaeodendron buchananii, Syzygium guineense, Allophylous abyssinicus, Millettia ferruginea, Cordia Africana, Ehretia cymosa, Euphorbia ampliphylla, Ficus sur, Poutera adolfi-friedericii, Shefflera abyssinica and vernonia amygdalina are the most preferred tree species that are source of NTFPs and the IVI result indivcated Cordia africana, Ficus thonningii, Dombeya torrida, Ekebergia capensis, Vernonia auriculifera, Fagaropsis angolensis, Galinieria saxifrage, Pitosporum virdiflourm and Psychotria orophilia to be the least important tree species. Therefore, the above-mentioned tree species should be a center of foret conservation scheme in the area either due to their high preferredness or due to their low abundance.

Key words: Nontimber forest products, participatory forest management, forest structure, population structure, importance value index, preference ranking

ix

1. Introduction

1.1. Background and justification

There is no exact data with regards to the past and present amount of forest area coverage in Ethiopia (Abate Ayalew *et al.*, 2006). However, it is believed that the natural forests of Ethiopia once covered about 42 million ha (about 40%) of the country's land area of the 110 million ha. This forest cover now accounts to only about 4.07 million ha which is about 3.56 % of the country's land area (WBISP, 2004; cited in Getachew Desalegn and Wubalem Tadesse, 2004). And according to Million Bekele (2001), the high forests which used to cover 16% of the land area in the early 1950s were reduced to 3.6% in the early 1980s and further declined to 2.7% in the early 1990s. Both cases show the rapid decline of forestry resource in the country unequivocally.

Of the remaining natural forests, most are located in less accessible and/or less populated areas of the southern and southwestern parts of the country (Kumelachew Yeshitela 1997; Kidane Mengistu, 2002). With the current annual loss of the high forest area estimated to be at the range of 100,000-200,000 ha per year, the country will lose all its natural high forests within the coming few years if the current trend of forest destruction is allowed to continue (Kidane Mengistu, 2002). Therefore, appropriate management systems must be introduced in order to save, protect and develop these resources.

Among the underlying factors for the high rate of forest destruction in the country are; subsistent economy of the rural poor, lack of awareness and inappropriate or less attention given by policy makers, GOs and even NGOs towards the forestry sector. Therefore, to combat this high rate of deforestation and degradation as a whole, due attention should be given to the forestry sector and Ethiopian forests have to be valuated for all the nontimber forest products (NTFPs) and services they are known to provide. Since NTFPs are not considered and developed in Ethiopia, forestry's contribution to GDP of the country in 1991/92 was estimated to be less than 3% (EFAP, 1994). But with exact inventory and evaluation of Ethiopian forests including its NTFPs and services it offers, the figure is for sure way above the 3%. EARO (1998; cited in Million Bekele, 2001), suggested, if direct consumption of commodities such as fuelwood and the indirect

1

contributions of forests to watershed management and soil conservation as well as that of forest products utilized in other manufacturing and construction activities are considered in the calculation, the contribution of forestry to the total GDP and agricultural GDP will be much higher amounting to about 10%. Yet if the NTFPs are developed and industries that consume NTFPs are expanded, the share of forest to the country's GDP can be even higher.

Nontimber forest products (NTFPs), described in the past as minor Forest products (MFPs) because of their small revenue value, were generally only used by the forest dwellers. Their economic value started increasing after 1960 as new uses for NTFPs were found in several industries (Saxena, 2003). In the present world NTFPs are known to generate huge amount of revenue. Forexample today in India, NTFPs provide approximately 40% of the total official forest revenues, 55% of forest-based employment and 70% of the total exports from forest products (Tewari and Campbell, 1997).

While NTFPs are traditionally used and appreciated by peoples of many cultures world wide, the significance of these products for sustainable economic growth, cultural endurance and environmental health is receiving increasing recognition by governments, researchers and other official agencies (Wilkinson and Elevitch, 2006). Meanwhile in the past decade it has been witnessed a rapid growth of interest in NTFPs among conservation and development organizations (Wallenberg and Ingles, 1998; Neumann and Hirsch, 2000). This can be attributed to increasing recognition of the contribution that NTFPs makes to the livelihoods of large numbers of people in developing countries (Arnold and Perez, 1998), and the suggestion that NTFPs can be harvested with relatively little impact on the forest environment (Neumann and Hirsch, 2000).

Research has focused on exploring the contributions that NTFPs can make to sustainable development by increasing financial income to rural communities and by increasing the value of forest resources thereby providing an incentive for conservation (Richards 1993, Wollenburg and Ingles, 1998). As a result commercialization of NTFPs is widely considered to offer a mechanism by which conservation and development goals can be

achieved concurrently (Christina and Ulrik, 2002). Because of the above facts and others, Ethiopian researchers, NGOs and the government are also considering NTFPs to be an important component for sustainable forest management and biodiversity conservation.

The most important NTFPs in Ethiopia according to Getachw Desalegn and Wubalem Tadesse (2004), include; Gum Arabic (from *Acacia senegal* and other species); Frankincense (from *Boswellia* spp); Myrrh (from *Commiphora* spp); Wild coffee, spices and condiments; traditional medicine; wild honey and bees wax; bamboo (*Arundinaria alpina* and *Oxytenanthera abyssinica*); reeds (*Arundo donax*); wild palm(*Phoenix reclinata*); food from wild edible plants and their products(fruits, seeds and edible oil); essential oil from aromatic plants; fats; fodder; fibers; tannins and dyes; ropes; resins; latex; ornament; panel products produced from giant or long grasses; roof thatch for local house construction; byproducts after liquidating lumber; Wild edible and non-edible animal products; and other extractives; flavoring, sweeteners, balsams and pesticides.

Although, the NTFPs of Ethiopia are diverse, the majority of them are still less known, less managed and understood (Getachew Desalegn and Wubalem Tadesse, 2004; Million Bekele, 2001). There is no inventory information with regards to the NTFPs to estimate the potential and plan its development. The biological, silvicultural and technical methods applicable to their management and utilization have not been developed and need urgent attention. Every management program for these resources must address these constraints effectively. Information on the management of natural stands of these crops is not readily available particularly information on the growth and factors influencing natural regeneration (Million, 2001).

Therefore, according to Million Bekele (2001), in Ethiopia, future program in NTFPs need to focus on:

- Inventory of resources
- Investments in research and development to improve the management of these resources

- Avoid the unsustainable and wasteful harvesting of these resources and estimate their monitory value to the national economy.
- Improve the marketing conditions of these products.
- Commercialization of some of the selected NTFPs through private sector involvement.
- Large-scale development of industries that use these resources as raw material.

The above recommendation is well taken and by this study inventory of NTFPs within the Bonga forest has been carried out.

Bonga forest, which makes 70% of the land mass of the Kaffa zone (AGRIBUSINESS_a, 2004), is an important place with center for *Coffea arabica* genetic diversity (Taye Bekele, 2003). Therefore, conservation of Bonga forest is very important in that it helps maintain the genetic resource of the important *Coffea arabica* and other genetic resources *in-situ* (AGRIBUSINESS_a, 2004). According to Taye Bekele (2003), Bonga forest is important ecologically, socioculturaly and economically in that it is a good source of organic coffee, cardamon, wild pepper, medicinal plants and other NTFPs. It is also of particular interest to tourists because of cultural wealth of different tribes particularly the Keficho and the Menja tribes. The breath-taking waterfall close to Bonga town is another site of interest. The forest is also suitable for bird watching as it inhabits more than 100 bird species.

Despite the immense importance of the Bonga forest as mentioned above, estimated rate of deforestation of Bonga forest is about 25,000 ha per year, which is about 1/4-1/8 of the total country's forest land lost every year (SUPAK, 2004). This indicates that sufficient attention towards conserving this forest is not given. Feyera Senbeta (2006) reported that the conservation efforts made in Bonga forest so far are not encouraging. The adjacent communities appear to have unrestricted access to the forest. As a result, the forest is subjected to agricultural expansion and selective cutting. Only very recently, FARM-Africa initiated the participatory forest management approach and the implementation process has been on going since 1996.

NTFPs are very important in managing forests sustainably and participatory forest management interventions should make use of these resources. According to AGRIBUSINESS_a (2004), the more lucrative NTFPs gained from Bonga forest the more it will be possible for the forest genetic biodiversity to be maintained. In order to use NTFPs for sustainable forest management, accurate information is needed on the status and regenerative capacity of the resource and on the harvesting techniques used to provide the product, in addition to information on the socio-economic and cultural aspects affecting the use of the NTFPs (Lorbach, 2002).

Therefore, this study focuses on generation comprehensive data regarding the NTFPs resource of the Bonga Forest as studied in the Gimbo District. To carry out a comprehensive study on the NTFPs resource of the Bonga forest, ethnobotanical, market and ecological data collection is very vital. Meanwhile, by this study the inventory of the NTFPs of the Bonga forest as studied in Gimbo district was carried out, market survey to evaluate market price of the different NTFPs and compare price variation over time was carried out , ecological data: like forest structure and population structure of the forest and forest trees coupled with biodiversity estimation was carried out 1) to compare the PFM and non-PFM forest patches found in the Gimbo District 2) to evaluate the conservation status of the most important forest trees used as a NTFP. The comparison of the PFM and the non-PFM forests was important in that it helps in evaluating the role of PFM and NTFPs in forest conservation.

All these findings of the study will be helpful in providing base line data so as sound management activities can be carried out in one of the remnant forests of Ethiopia, the Bonga Forest, which is among the national forest priority areas of Ethiopia.

2. OBJECTIVES

2.1. General objective

To asses the NTFPs found in Gimbo District and to study the amount, value and conservation status of the NTFPs.

2.2. Specific objective

- To document the NTFPs found in the Gimbo District.
- To document the plant and animal species used as NTFP and carry out analysis on the preference of the local community.
- To compare population structures of two forest patches (management units) one managed by PFM (participatory forest management) and the other not managed by PFM.
- To evaluate population structure of the most important NTFPs trees.
- To make market surveys so as to asses the status of NTFPs in the local economy.
- To analyze the role of NTFPs in the sustainable forest management scheme in the area. This is done by comparing the two forest management units.
- To evaluate the conservation status of the NTFPs by analyzing their availability over the past few years.
- To make biodiversity measure and compare the biodiversity between the two forest management units.

3. LITRATURE REVIEW

3.1. Defining Nontimber Forest Products

Various terms (e.g., Nontraditional, Secondary, Minor, Nonwood and Special or Specialty) forest products have been used to describe products that come from the forests that are not timber-based. Recent legislation in the USA uses the term "Forest Botanical Products" to describe these products (H.R. 2466, 1999). The USDA forest service defines them as special forest products (USDA forest service, 2001). But, a more common and widespread term is "Nontimber Forest Products". Nontimber Forest Products (NTFPs) are plants, part of plants, fungi, mosses, lichens, herbs, vines, shrubs, or trees and other biological materials harvested from within and on the edges of natural, manipulated or disturbed forests (chamberlain, et al., 2004). Plant parts harvested include the roots, tubers, leaves, bark, twigs and branches, fruits, sap and resin, as well as the wood (Chamberlain, et al., 1998). Animal products such as honey and wild games are also recognized as NTFPs (Wilkinson and Elevitch, 2006). Products from plants such as tannins, rubber, gums, gum resins, resins, essential oils, honey, medicines, fodder, wild fruits and several other materials were classified as minor forest products. These are presently grouped as Nontimber Forest Products and have immense application in the industry, and also provide livelihood to millions of rural poor (Coppen, 1995).

According to Stellmacher (2005), NTFPs are currently classified into four major product categories: culinary, wood based, floral and decorative, medicinal and dietary supplements. And NTFPs are often gathered from natural forests. Others maybe produced with varying degrees of cultivation and domestication, either within a forest ecosystem or as part of planted forest system such as an agroforestry project.

3.2. Coffee

Coffee plays an important role in the world economy. It is the second most valuable exported commodity on earth after oil. More than 80 countries in the developing world depend on coffee as a major source of their foreign currency earnings. For instance, coffee generated about US\$13 billion in 1983 and US\$18 billion in 1994 for the exporting countries (Tadesse Woldemariam, 2003). Until 2000, coffee contributed to

80% of Burundi's, 67% of Ethiopia's, 55% of Uganda's and 30% of Nicaragua's earnings from export (Oxfam, 2002).

Coffea arabica is a species of coffee indigenous to Ethiopia. It is also known as the "coffee shrub of Arabia", "mountain coffee" or "arabica coffee". *Coffea arabica* is believed to be the first species of coffee to be cultivated, being grown in southwest Arabia for well over 1,000 years. It is considered to produce better coffee than the other major commercially grown coffee species, *Coffea canephora* (C.*robusta*). Arabica coffee contains less caffeine than any other commercially cultivated species of coffee. Wild plants grow to between 7-12 m tall, and have an open branching system; the leaves are opposite, simple, elliptic-ovate to oblong, 6-12 cm long and 4-8 cm broad, glossy dark green. The flowers are produced in axillary clusters, each flower white, and 1-1.5 cm diameter. The fruit is a berry 10-15 mm long, maturing bright red to purple, containing two seeds (the coffee 'bean'). The trees are difficult to cultivate and each tree can produce anywhere from 0.5-5 kg of dried beans, depending on the tree's individual character and the climate that season (http://en.wikipedia.org/wiki/Coffea_arabica, cited on 3, 1, 2007).

About 25% of Ethiopia's 77.6 million population depend on coffee for their livelihood. The Ethiopian coffee is also important source of coffee genetic resources for the world coffee industry. Because, Ethiopia is the only center of origin and diversification of Arabica coffee (*Coffea arabica*), which is cultivated in most parts of the tropics, accounting for 90% of the world coffee market, and about 70% of the production (Tadesse Woldemariam, 2003). *Coffea arabica* is also a very important medicinal plant. Chapman & Hall, 1997; cited in Dawit Abebe *et al* (2003), *Coffea arabica* contains caffeine and caffeic acid which posses virucidal and anti HIV-properties respectively. Caffeic acid also shows antibacterial and antifungal properties (Harbone & Baxter, 1993; cited in Dawit Abebe *et al*, 2003).

However, deforestation and change in land use are threatening its forest gene pools *of Coffea arabica* in Ethiopia. This has been aggravated with the recent coffee price crisis on the world market as a result of market liberalization. Coffee crisis affected the livelihood of about 15 million Ethiopians, out of which 5 million are severely affected

8

and facing famine (Tadesse Woldemariam, 2003). Coffee is found in 81% of the total 30,440 ha forest of Gimbo District (SUPAK, 2004).

3.3. Honey and Wax

3.3.1. Honey

Nectar is a solution of sugars and other minor constituents that bees collect and concentrate into honey. Honeys contain a wide range of sugars, varying according to the nectar source, and small amounts of other substances such as minerals, vitamins, proteins and amino acids. Honey has value as a food, as a medicine, as a cash crop for both domestic and export markets and as an important part of some cultural traditions (Bradbear, 2004).

3.3.2. Beeswax

Beeswax is the material that bees use to build their nests. It is produced by young honeybees that secrete it as a liquid from special wax glands. Beeswax is valued according to its purity and colour. Light-coloured wax is more highly valued than dark-coloured wax, because dark wax is likely to have been contaminated or overheated. The finest beeswax is from wax cappings, which are the wax seals with which bees cover ripe honeycombs. This new wax is pure and white. The presence of pollen turns it yellow (Bradbear, 2004).

Beeswax has many traditional uses. In some countries in Asia and Africa, it is used in creating batik fabrics and in the lost-wax method of casting small metal objects. Beeswax is widely used as a waterproofing agent for wood and leather, and for strengthening threads; it is used in village industries such as candle-making and as an ingredient in ointments, medicines, soaps and polishes. Beeswax is in great demand on the world market. There are more than 300 industrial uses for beeswax. Cosmetics and pharmaceutical industries are the major users, accounting for 70 percent of the world trade, and require first-class beeswax that has not been overheated. The price ranges from US\$4 to US\$8 per kg. Other significant users are the beekeeping industries in

industrialized countries that need beeswax for cosmetic foundations and for candlemaking. Beeswax is used in the manufacture of electronic components and CDs, in modeling and casting for industry and art, in polishes for shoes, furniture and floors, in grafting waxes and in specialized industrial lubricants (Bradbear, 2004).

3.3.3. Honey and beeswax in Ethiopia

There are an estimated 10 million bee colonies in Ethiopia. This figure at present is the highest in Africa. Out of the 10 million, 2.5 million is estimated to be found inside forests and crevices while the remaining 7.5 million is confined to hives. Ethiopia is also a country endowed with surplus honey source flora. These two facts therefore, make the country the leading producer of honey and beeswax in Africa. On world level, also, Ethiopia is fourth in beeswax and tenth in honey production (Girma Defar, 1998).

However, there are major constraints that affect apiculture in Ethiopia. And these are lack of beekeeping knowledge, shortage of trained manpower, shortage of beekeeping equipment, pests and predators and inadequate research works to support development programmes (Girma Defar, 1998).

3.4. Fuelwood and Construction

In Ethiopia, wood is the main energy source for urban and rural people. Wood is also widely used for construction, fencing and making farm implements. The estimate for annual wood production in 1990 was about 4 million m³, out of which 90 per cent was utilized as fuelwood. The wood required for fuel and construction purpose mainly comes from the secondary high forests, woodlands and bush lands. Wood for fuel and construction comes also from trees planted on farms, and plantations (Kidane Mengistu, 2002).

3.5. Medicinal Plants

Medicinal plants can be defined as plants / herbs grown for medicinal purposes, as opposed to growing them for culinary or ornamental purposes. They can also be defined as any plant which provides health-promoting characteristics, temporary relief on symptomatic problems or has curative properties. (http://davesgarden.com/terms/go/573/, cited on 3/1/2007)

Medicinal plants comprise one of the important components of the Ethiopian vegetation. On record there are 1000 species of medicinal plants constituting a little over 6% of Ethiopia's vascular flora. They are distributed all over the country, with greater concentration in the south and south-western parts of the country. The woodlands of Ethiopia are the source of most of the medicinal plants, followed by the montane grassland/dry montane forest complex of the plateau. Other important vegetation types for medicinal plants are the evergreen bushland and rocky areas (Girma Defar, 1998).

It is reported that 60-85% of every developing country's population relay on traditional medicine (Sofowora, 1982; cited in Abiyot Berhan *et al.*, 2006). And Some 25% of the medication prescribed world-wide contains ingredients extracted directly from medicinal plants; the total economic value of medication extracted from plants is estimated at USD 43 billion a year (Rijsoort, 2000). In Ethiopia, it is estimated that about 85% of the Ethiopian population has no access to modern health care and medicine (Amare Getahun, 1976; Dawit Abebe, 1986; cited in Abiyot Berhan *et al.*, 2006). Even if they have access the drugs are expensive (Abiyot Berhan *et al.*, 2006). Therefore, over 85 percent of the rural population, plus an increasing number of the poor in urban centers, and animal husbandry employ many of the available plants, as well as products from wild animals and minerals as their primary source of healthcare in the fight against various physical and mental health problems (Girma Defar, 1998).

Ethiopia has a long history of traditional healthcare based largely on rich, though unstandardized, pharmacopoeia drawn mostly from plants used both by women in the home in self-administration and traditional health practitioners (THPs). The efficacy of a

few of these plants (*Hagenia abyssinica*) and *Glinus lotoides* from the treatment of tapeworm infection, and *Phytolacca dodecandra* as a molluscicide in the control of schistosomiasis) has been scientifically determined, but the safety and efficacy of many others in the treatment of various diseases remains underdeveloped (Girma Defar, 1998).

However, man made factors like Rapid increase in population, the need for fuel, urbanization, timber production, overharvesting, destructive harvesting, invasive species, commercialization, honey cut, degradation, agricultural expansion and habitat destruction coupled with natural causes like recurrent drought, bush fire, disease and pest out breaks are making many of the plant species used in THPs rare and limited in distribution (Ensermu Kelbessa *et al.*, 1992).

Besides that, organized and documented information on use and marketing of medicinal plants in Ethiopia is fragmentary. Even though there is some literature in traditional medicine, it does not include any economic value of plant medicine that generates income for people who practice it for their livelihood (Girma Defar, 1998). Therfore, loss of indigenous knowledge about THPs is becoming a major challenge.

In the Bonga forest, medicinal plants are known to be present in abundance. About 23 trees/shrubs have been named (by the local population) that have medicinal properties and being used independently or mixed with other products. Out of these, six (*Hagenia abyssinica, Myrsine melanophloeos, Myrsine africana, Croton macrostachyus, Phytolacca dodecandra* and *Embelia schimpri*) are used in one form or another to treat tapeworm infection. *Ekbergia capensis* and *Olea capensis* subsp *macrocarpa* are used to treat abdominal cramps. The list goes on that roots, leaves, stems and barks of a number of tree species are used to treat skin disease, wounds, malaria, venereal disease, common cold and coughs, lung troubles and asthma (AGRIBUSINESS_b, 2004).

3.5.1. Status of the medicinal plants

An estimate of the threat to medicinal plants can be made from the type of plant and the parts used. Harvesting the roots of a tree poses more of a threat than collecting the fruits and seeds, and this can be more threatening than using the leaves. The plants used, as

recorded in Jensen's list, have often been confirmed from notes on specimen labels. The proportion of the plants in the list is as follows:

Part Used	Percentage
Ash	1
Bark	6
Bulb/tuber	1.7
Flower	2.5
Fruit	13
Gum/resin	2
Herb/stem	26
Leaf	43
Root	25
Sap	10
Seed	13
Smoke	2.5
Wood	0.5

Table 1: Plant parts used as medicine in Ethiopia

Source: Girma Defar, 1998

It is interesting to note that a high proportion of plants are used for their leaves. This indicates that many of the medicinal plants are being used in a sustainable way. However, it has also shown that about a quarter of the plants used are harvested for their roots, tubers or bulbs. These species need special attention to determine their status and what measures should or could be taken to have them conserved (Girma Defar, 1998).

3.6. Spices and Condiments

Although spices and condiments can be defined in many ways, in this study the definition stated by Jansen (1981) is adopted. Mean while, spices and condiments are plants or plant products including culinary herbs that are used to flavour foods or beverages before, during or after their preparation. According to Jansen (1981), among the spices and condiments found in Ethiopia are: cardamon (*Elettaria cardamomum*), Indian long pepper (*Piper longum*), *Aframomun corrorima* (commonly known as Korrorima) and *Rhamnus prinoides* (commonly called Gesho).

3.6.1. Aframomum corrorima (Braun) Jansen

Aframomum corrorima is a monocotyledonous flowering plant belonging to the family Zingiberaceae. *A. corrorima*, commonly known as false cardamom or Ethiopian cardamom, is one of the most widely used spices in Ethiopia to flavour food and beverages. This herb is endemic to Ethiopia. It grows naturally at an altitude of 1700–2000 m on slightly shaded, more or less open places in forests. Although this plant grows in the wild, cultivation has recently been reported from some parts of the country. Morphological characteristics are scaly underground rhizomes and leafy stems, growing up to a height of 1–2 m. The plant flowers from January to September and the fruits mature about 2–3 months later. They are brownish in colour, have a flask-likeshape, are 3–6 cm long and 1.5–3 cm in diameter. Dried fruits are commonly sold in markets (Araya Hymete *et al.*, 2006).

Seeds of *A. corrorima* are used medicinally in Ethiopia as a carminative, purgative and tonic agent (Wannakrairoj and Wondyifraw Tefera, 2004; Araya Hymete *et al.*, 2006). They contain 1–2% essential oil, with 1, 8-cineole as the main constituent (35–42%); the presence of other monoterpene structures has been reported. Essential oils from other members of the genus *Aframomum* are reported to contain several mono-, sesqui- and diterpenes (Araya Hymete *et al.*, 2006). According to Sebsebe Demissew (1993; cited in Wannakrairoj and Wondyifraw Tefera, 2004) korarima oil has similar chemical composition with that of its famous relative, the Indian cardamom (*Elettaria cardamomum* (Zingiberaceae), except for its reduced content of terpinyl acetate, which is the major component in the latter.

Traditionally extracts of cardamom (*Elettaria cardamomum*) seeds and fruits have been used to treat skin conditions and to aid digestion in South Asia. It was also used to treat cases of food poisoning and has been widely used in Ayurvedic medicine to treat disorders of the stomach and urinary system, asthma, bronchitis and heart problems (<u>http://www.plantcultures.org.uk</u> cited on October11, 2006).

Cardamom (*Elettaria cardamomum*) has also the following uses (<u>http://www.plantcultures.org.uk</u> cited on October11, 2006);

14

- When mixed with neem and camphor, cardamom is used as a nasal preparation to treat colds. An infusion of cardamom can be used as a gargle to relieve sore throats, which has led to its use in cough sweets.
- Roasted seeds were boiled with betelnuts to make a drink that would be used to treat indigestion and nausea. They are also added to tea to make a tonic to relieve the symptoms of stress due to overwork or depression.
- Cardamom seeds are given to patients with bad breath and a capsule of cardamom taken with honey is reputed to improve eyesight.
- It has been used traditionally to treat areas of the body that have red-pigmentation. It is often incorporated into soaps and hand creams. The traditional uses of cardamom to treat skin conditions have attracted the attention of those developing plant-based cosmetics,
- Its use as an aromatic stimulant is recognized in Britain and Europe and it is well known for its stomach calming properties.
- Cardamom oil is aromatic with antibacterial properties and is used in cosmetics and chewing gums. Cardamom oil is also used in cosmetics because of its cooling properties and it is a pale to colourless liquid that can be easily incorporated into different solutions. The taste is warm and spicy and can be used as a flavour to chewing gum
- Researchers have shown that extracts of cardamom have anti-inflammatory activity but the compounds in the extracts were not identified

Although quite many traditional uses of cardamom has been identifyed, to date there are very few scientific studies on cardamom seeds that provide scientific evidence for its traditional uses (<u>http//www.plantcultures.org.uk</u> cited on October11, 2006).

Previously Ethiopia was well known for its considerable exports of korarima capsules to the world market, mainly as a substitute for the Indian cardamom. However, the supply has greatly fluctuated during the past few decades that the total annual korarima export has decreased to less than 60 tones in the years 1994- 1998, fetching only some 2.1 million USD (Chanyalew 1999; cited in Wondyifraw Tefera and Wannakrairoj, 2004). This situation could mainly be ascribed to the reduction of production as a result of the ever increasing destruction of the natural habitat, which is even threatening the mere existence of the crop in the country. Compared to cardamom, korarima has a relatively wider adaptation and higher productivity (ca 5.5-fold), a factor that could have attracted producers' interest to expand its production. However, there are no visible activities regarding establishment of new plantations due to the varied problems associated with the sector. Among others, these include lack of a sustainable market outlet, absence of planting materials (Wannakrairoj and Wondyifraw Tefera, 2004).

3.7. Palms

Palms are monocots, included in the section of angiosperms characterized by bearing a single seed leaf. Scientifically palms are classified as belonging to the family palmae (the alternative name is Arecaceae), are perennials and distinguished by having woody stems (Dennis, 1998).

3.7.1. Phoenix reclinata Anthirity

The Senegal date palm (*Phoenix reclinata*) is one of the palms commonly known in Ethiopia. This plant is known to be used as ornamental (avenue tree) plant. It is also important for soil improvement, for making roble, for making tannins (dyes), for making roof thatch (Azene Bekele, 1996). The use of palms as beverages is also common in some parts of the world. Palm wine or toddy is an ancient beverage derived from the sap of a number of different palm species, and serves as an appropriate example of beverage. The sap is obtained by tapping and collecting the liquid in a receptacle from an inflorescence of the tree employing sophisticated techniques that must have required considerable trial

and error experimentation. Tapping the stem or felling the tree is also a means of obtaining sap that are much simpler. There is no difference in the quality of the sap obtained from the different methods. Because of the presence of naturally occurring yeasts, the sweet palm sap ferments within hours in to mild alcoholic beverage. *Phoenix reclinata* is one of the maney palm species from which tapping palm wine is common (Dennis, 1998).

Moisture (%)	98.3	Potassium(mg)	157
Ash(g)	0.4	Copper(mg)	0.05
Protein(g)	0.2	Zinc(mg)	0.02
Fat(g)	-	Manganese(mg)	Trace
Fiber(g)	-	Phosphorous(mg)	1.74
Carbohydrate(g)	1.1	Thiamin(mg)	0.01
Energy value	22+109	Riboflavin(mg)	0.01
Calcium(mg)	0.45	Niacin(mg)	0.5
Magnesium(mg)	5.12	Vitamin C(mg)	6.5
Iron(mg)	0.07	Alcohol(%v/v)	3.6
Sodium(mg)	5.85	-	-

Table 2: Nutritional composition of palm wine from *Phoenix reclinata* (per 100g)

Source: Dennis, 1998

3.7.2. Bamboo

More than 1,500 bamboo species are found world wide (Ohrnberger, 1999; cited in Kassahun Embaye, 2004). Of these Africa has about 43 species of bamboo; fourty of these 43 species are mainly distributed in Madagascar while the remaining three species are found in main land Africa (Ensermu Kelbessa *et al.*, 2000). Of the three species of bamboo found in main land Africa, Ethiopia has two of the species referred as the high land and the lowland bamboo whose basic difference is their culm. The culm of the high land bamboo being hollow while that of the low land bamboo being solid (Kassahun Embaye, 2004).

Around 86% of the African bamboo resource is found in Ethiopia spread in the major Bamboo growing areas of the SNNP, Oromiya, Benishangul, Amhara, and Tigray regions. And among the major Bamboo Areas in Ethiopia the two sites are in Bonga forest (Ensermu Kelbessa *et al.*, 2000). According to SUPAK (2004), the total bamboo forest area in Bonga forest is estimated to be about 20,000 ha which is 2% of the total Kaffa zone land area. Gimbo is a district that is known to posses no bamboo forest (LUPof Gimbo District).

Bamboo provides a wide range of goods and services more than any other plant (Weldemichael Kelecha, 1980; Amare Getahun, 1992; Ayre-smith, 1963; Liese, 1995; cited in Kassahun Embaye, 2004). In Asia bamboo is used in many ways. For example in Nepal, bamboo is used in more than 180 ways (Poudyal, 1991; cited in Kassahun, 2004). But in Ethiopia despite the fact that bamboo is the most freely and readily available resource for the communities living near by the natural bamboo forests, its uses have been backward and limited in making huts, beehives, furniture and the like. Bamboo shoots are also known to be consumed by some rural people (Woldemichael Kelecha, 1980; Amare Getahun, 1992; cited in Kassahun Embaye, 2004).

Bamboo is the fastest growing perennial plant (Liese, 1995;cited in Kassahun Embaye, 2004). Because of its fast growth, since it produces many vegetative shoots every year and because of the fact that its rhizomes and roots are very good in holding soils, bamboo is the most preferable plant for rehabilitating soils (Kassahun Embaye, 2004).

3.8. Wild foods

The term 'wild-food' is used to describe all plant resources outside of agricultural areas that are harvested or collected for the purpose of human consumption in forests, savannah and other bushland areas (Bell, 1995). But in this thesis, wild food besides plants, includes mushrooms and animals. Wild foods are important in that they are usually used to pass drought seasons of the year and help prevent starvation (Zemede Asfaw, 1997).

According to Zemede Asfaw (1997), 8% of Ethiopian higher plant species are edible and out of this only 25% are cultivated. Wild animals are also eaten in different parts of

Ethiopia. According to many studies conducted elsewhere wild animals have been known to have a considerable proportion of the meal and do also support the household economy (eg. Cowlishaw *et al.*, 2003)

3.9. Gum, gum resins and resin

Natural gums (gums obtained from plants) are hydrophilic carbohydrate polymers of high molecular weights, generally composed of monosaccharide units joined by glucocidic bonds (Davison, 1980). They are generally insoluble in oils or organic solvents such as hydrocarbons, ether, or alcohols. Gums are either water soluble or absorb water and swell up or disperse in cold water to give a viscous solution or jelly and upon hydrolysis they yield arabinose, galactose, mannose and glucuronic acid (Mantel, 1949; cited in Balakrishnan, 2000).

Based on their solubility in water gums are classified as (1) soluble, (2) insoluble and partially soluble gums. Certain gums dissolve in water to form a transparent colloidal solution (e.g. Gum Arabic). Gums such as gum tragacanth, gum karaya do not dissolve in water but swell up into a jelly-like mass. However, if sufficient amount of water is added they yield a thick transparent solution. Partially soluble gums first form a swollen jelly by dispersing in water and become solution on addition of more water. Mogador or Morocco gum (from *Acacia gummifera*) is an example of partially soluble gum (Balakrishnan, 2000).

Resins are polyterpenes and their acid derivatives. They are oxidation products of terpenes in all manners of incomplete stages. Resins are very complex chemical compounds and are soluble in organic solvents. They do not have affinity for water. The less soluble resins can be made to dissolve by a process known as 'running' or sweating (Mantel, 1950; cited in Balakrishnan, 2000). When the resins contain essential oils, they are called oleoresins or soft resins. Gumresins are a combination of resins and true gums with a mixture of characteristics of both. Certain gumresins contain small amount of essential oil. They are called oleo-gumresins. Small quantities of resins exude on the surface of the trunk due to injury by wind, fire, lightening or wound caused by animals.

However, for commercial purpose tapping is necessary. Sometimes the natural exudation is so copious that the resin becomes buried and fossilized in the soil around the trunk. Vast deposits of resin may be found where the original forest has disappeared. Amber is an example of fossil resins (Balakrishnan, 2000).

Gum, gum resins and resin have numerous uses. Use of gums and resins by human goes back to remote times. Gum Arabic has been used at least 4500 years before (Davison, 1980). The industrial applications of gums and resins have expanded tremendously in recent years. They have been used in many unrelated industries. Gums and resins form an important and widely used group of nontimber forest products, and are principal components in food and pharmaceutical industries. The world market for gum only as food additives is over US \$ 10 billion in 1993 (Coppen, 1995). Some important uses of natural gums and resins also (Balakrishnan, 2000) are paper industry, textile industry, petroleum and gas industry, pharmaceuticals, cosmetics, beverages, diary products like for cream stabilization, for low calorie milk shake and in cheese products. Gums and resins have also numerous applications in the food industry like for flavour fixation, for bulking dietic foods, for confectionery uses, for bakery products and so on.

Gums are also used for making inks, paints, metal cutting fluids, toys, air fresher gels, hydro-mulching to promote seed germination, boiler compounds, ceramics, welding rods, cleaners crayon and in mining, polymerization aide, lithography, stabilizing insecticides, surface coating of wood and plastics, polish, leather industry, adhesives and explosives. Gum resins have been used in industry such as perfumery, and other cosmetics, medicine, spices and incense. Resins are now mainly employed in paints, varnishes, lacquers, sizing paper, manufacture of soap, linoleum, sealing wax, adhesives, medicines, ink, etc

3.10. Other NTFPs

Other NTFPs include; ferns, lianas, furniture and fixtures made from NTFPs as a row material, other products from bees, etc.

3.10.1. Other products from bees

In addition to honey and wax, bees will produce a number of other products all of which enjoy commercial markets. These include pollen, propolis and royal jelly (Bradbear, 2004)

3.10.2. Lianas

Lianas, defined here as climbers that cannot support themselves in an upright position but which grow over other plants and/or nonliving structures, are characteristic features and dominant growth forms in tropical forests (Gentry & Dodson, 1987; Gentry, 1991; Nabe-Nielsen, 2001; Schnitzer & Bongers, 2002; in Feyera senbeta 2005). According to Feyera Senbeta (2005), 56 species of lianas have been recorded from Bonga forest

3.11. Challenge in NTFPs Inventory

In this research, NTFPs are inventoried using conventional forest inventory techniques. Jenny Wong, however after reviewing 126 studies, concluded that conventional forest inventory techniques have limitations while applied for NTFPs inventory. This is because of the inherent nature of NTFP described below (<u>http://cms1.gre.ac.uk/ conferences/</u><u>iufro/proceedings /Wong% 20paper c% 202.pdf</u> cited on 15/4/2006);

- *Rarity*: many NTFPs are rare which means that only a few plots of a conventional inventory designs will contain the species of interest. This results in very inefficient and costly inventories which often do not produce the quality of data required.
- Clumped distributions: NTFPs often occur in relatively dense patches within the landscape.
- Imperfect detectability: people dealing with trees have rarely come across the problem of searching for an elusive or moving target because trees are generally large and static. Unfortunately, many NTFPs are not so obvious (e.g. truffles and epiphytes) and these require that detectability is considered.
- Seasonality: many NTFPs are seasonal but timber accrues slowly over time consequently forest inventory methods do not cope well with seasonality.

- Mobility: animals run away, fruit falls off a tree and rolls down a hill but trees are static.
- Quantification of yield for non-destructive harvesting: most of the methods for determining timber yield from a forest are concerned with the harvesting of entire individuals. For NTFPs often only a small part of the individual is harvested. There is little theoretical background for determining harvesting levels for parts of a plant. It seems that the simple adoption of forest inventory practice is not going to meet the needs of NTFP inventory.

Therefore, in this study, NTFPs inventory is coupled with socio-cultural and economic surveys to minimize the limitation of the conventional forestry inventory techniques used to inventory NTFPs found in Gimbo District. In doing this it is believed more realistic result is delivered.

Lund (1997, 1998; cited in Wong, 2000); Green wood, (1996) and Gronow and Safo, (1996), have identified four types of study that are needed for a successful and sustainable development of NTFPs. And these are:

- a) Biodiversity inventory (list of species)
- b) Resource inventory
- c) Cultural studies
- d) User market and product surveys

a) <u>Biodiversity inventories</u>: deal with producing a check list of the taxa identified at the sample, locality or plot. And it is presented by species and family. Species list are a useful sources of information on the distribution and ecology of NTFPs, but provide little or no information on the abundance. Therefore, resource inventory is vital in NTFPs inventory/studies.

b) <u>**Resource inventories**</u>: deal with determination of abundance, distribution and management potential of NTFPs. There are three possible types of resource inventories for NTFPs study.

- <u>Single resource inventories</u>: an inventory aimed at the quantification of the abundance and distribution of a single product. This method is very important when the NTFP under study is very valuable. E.g. high value medicinal plants, bamboo, rattan or palm products, etc.
- Single purpose multi resource inventories: an inventory aimed at gathering management information on several NTFPs in a given area. This method can be a sound and pragmatic means of studying the distribution, abundance and NTFPs management potential of the area to be logged.
- <u>Multi purpose resource inventories(MRI)</u>: is a type of data collection effort designed to meet all or part of the information requirements for two or more products, functions (such as timber management and watershed protection) or sectors (such as forestry and agriculture).

Many of the NTFPs assessment take place in MRI. NTFPs are often a small component of resource inventory.

In this research, single purpose multi resource inventories method of resource inventory is carried out.

c) <u>Cultural studies</u>: this is gathering of anthropological data. Anthropological data are gathered using participatory approaches like (PRA) techniques. Ethnobotany in particular is the relevant anthropological data that should be gathered in NTFPs study and ethnobotany deals with the inventory of traditional use of plants by peoples.

d) <u>User, market and products surveys</u>: is an economic assessment of the actual and potential contribution of NTFPs to the local and macroeconomics. And is also an economic assessment of the marketing and value addition of NTFPs.

3.12. The role of NTFPs for Sustainable Development.

Sustainable development is development which meets the needs of the present with out compromising the ability of future generations to meet their won needs (WCED, 1987; cited in Jhonatan, 2000). A development is sustainable if it is economically, environmentally and socially sustainable (Jhonatan, 2000).

NTFPs are important for sustainable development because of the following reasons;

- They are diverse. They have greater monetary value per unit weight. Therefore, harvesting of NTFPs generally requires more labour and less capital, causing less pressure on the ecology. NTFPs also supplement and supplant timber cutting from the forests (Arnold and Townson, 1998). NTFPs are also environmentally sustainable.
- They provide job opportunity for the poor and women. This has been proved by many studies carried out (eg. Singh, 1997; Millik, 2001). Therefore, NTFPs guarantee equitable (fair) distribution of resources resulting in a socially sustainable system.
- They generate income which is of an imidiet type. And since they are diverse they can be harvested throught out the year. Therefore, making them economically sustainable.

 \triangleright

3.13. The role of NTFPs in Sustainable Participatory Forest Management (PFM).

Participatory forest management (PFM) or sometimes called joint forest management (JFM), is a forest management system in which, communities (forest users and managers) and government services (forest department) work together to define rights of forest resource use, identify and develop forest management responsibilities, and agree on how forest benefits will be shared. PFM involves the legal transfer of forest resources (use rights) from the government forest services to a community management group. PFM will enable communities to sustainably manage forest areas, under legal use rights agreements. (FARM-Africa / SOS Sahel Ethiopia, 2007).

Under PFM /JFM arrangements, local communities are permitted to collect NTFPs and enjoy the benefits from them. Besides NTFPs, the communities are given a share in the harvest of timber (Rao, 1998). Therefore, since the benefit farmers get from NTFPs is of an immediate nature and with less damage to the forest, NTFPs are the key resource in PFM.

1.14. Species Richness and Eveness

Altough biodiversity has genetic, species, ecosystem and cultural diversity attributes; species diversity is still a commnest measure of biodiversity (Kent and Coker, 1994). Species diversity comprises two components i.e. species richness and evenness.

Species richness is a simplest measure of species diversity whereby it referes to the total number of species in a community. Evenness on the other hand is the measure of equitabiliy. The two well known indices to measure species richness are Shannon weiner index and sympsons index. Shannon weiner function is the most popular measure of species richness and is not affected by sample size (Kent and Coker, 1994). Shannon weiner (H') is known to never exceed 5.0 (Washngton, 1984; cited in Salanga, 2004)

 $H' = -\sum (Pi \ln Pi)$ where; Pi denotes the proportion of a particular species in a sample. Evenness (E) is also computed as E=H/Hmax; where Hmax = Ln (Number of species)

4. STUDY AREA AND METHODS

4.1. Study Area

4.1.1. Geographic location

The study was carried out in Gimbo District, southwest Ethiopia. Gimbo District is one of the ten districts of the Kaffa Zone, southwest Ethiopia. The District is found within the geographical location of 6^{0} N - 13^{0} N and 34^{0} E - 46^{0} E (Figure, 1) and has a total land area of 87,187 ha. Gimbo District is the district in Kaffa that contains the major towns of the Zone namely; Bonga, Uffa and WushWush. Bonga is the administrative center of the Kaffa Zone and is found 440 km southwest of Addis Ababa.

4.1.2. Topography

Gimbo District has 85% of its area as highland and 15% low land. From the highland 10% has an altitudinal range of 2000-2500 m a.s.l and 75% is within altitudinal range of 1500-2000 m a.s.l. And the lowland is found within altitudinal range of 1000-1500 m a.s.l. (SUPACK, 2004). The area has rugged and mountainous topography (Abayneh Derero *et al.*, 2003) and also has gentle and flat landscape towards the Gojeb River.

4.1.3. Geology and soil

The geology of Gimbo District comprises (Eocene-oligocene) Jima volcanics (MoWR, 1996a; cited in Abayneh Derero *et al.*, 2003). And the dominant soil unit comprises chromic luvisol, very deep dark reddish over dark reddish brown clay loam over clays (MoWR, 1996b; cited in Abayneh Derero *et al.*, 2003). Nitosols, regosols and cambisols are among the different soil taxonomic groups of the study area (Feyera Senbeta, 2006).

Figure 1: Map of the study area

4.1.4. Climate

Gimbo District has long rainy season from March to November, the wettest season being May and June. The mean annual temperature of the district measured at Bonga town is 19.5 °C (EWNHS, 1997; cited in Abayneh Deraro *et al.*, 2003).

Figure 2: Climate diagram of the study area (Bonga metrological station).Source: Ethiopian Metrological Service Agency, data for 20 years (1998-2007).

4.1.5. The people

The people in the study area are largely speakers of the language Keficho. These Keficho speaking people have social groupings sometimes considered as tribes. Also in the area, there are Oromo, Amhara, Tigre, Kembata and Hadiya ethnic populations. The resource use pattern observed today has multicultural dimensions because this mix of people of different culture and knowledge backgrounds brings different pattrnes in to play.

4.1.6. Population

Table 3: Population and Household Estimates of Gimbo Woreda (a) and of the study area (b) in numbers, Year July 1, 2006

a)							
Number of kebeles	Number of people			Number of households			
40	Male	Female	Total	25340			
	59016	60942	119958				

b)							
Name of the kebele	Numb	er of peop	ole	Number of households			
	Male	Female	Total				
Yeyebitto	1203	1270	2473	490			
Bita chega	1048	1092	2140	419			
Kaya kela	720	735	1455	293			
Qeja araba	1344	1233	2577	494			

(*Source*: Kaffa zone Finance and economy office)

4.1.7. Land use and economy

Table 4: Gimbo district land use/cover (ha)-(a) and the status of Montane forest (ha) in the study site-(b)

Land use types	Land area(ha)	
Bu	iilt up area	674
Cultivated land	Intensively	35,034
	Moderately	1,348
	Tea plantation	2,617
Montane forest	Undisturbed	23,009
	Disturbed	8,357
	Highly disturbed	3,162
Wood land	Dense shrub/bush	902
	Savanna	0
plantation	eucalypt	1,259
	juniper	912

	Coffee investment area	406
Grassland	Open	1,893
	Wooded	327
Wetland	Perennial	4,511
	Seasonal	2,776

b)							
Study site	Montane forest						
	Undisturbed	Disturbed	Highly disturbed				
Yeyebito	1,388	278	10				
Bita Chega	2,320	10	0				
Qeja Araba	0	2,349	10				
kayakela	793	992	198				

(Source: SUPAKS, 2004)

4.1.8. Vegetation

Bonga forest and Kafa forest are classified in the vegetation of Ethiopia refered to as moist evergreen montane forests. The forests are located within altitudinal range of 1100-2700 m a.s.l. The forests in this area are normally the richest in species (Friis *et al.*, 1982). According to the recent inventory carried out by the Institute of Biodiversity Conservation and Research through the GTZ-supported Forest Genetic Resources Conservation Project, Bonga forest is characterized by three distinct vegetation types (Taye Bekele, 2003). These vegetation types are:

Upland Rainforest Vegetation- This vegetation occurs at altitudes between 1500-2200 m a.s.l and characterized by big tree species such as *Olea welwitschii*, *Schefflera abyssinica*, *Euphorbia ampliphylla*, *Croton macrostachyus*, *Albizia schimperiana*, *Prunus africana*, *Syzygium guineense* and Polyscias *fulva*. It also contains common smaller trees and shrubs such as *Millettia ferruginea*, *Teclia nobillis*, *Dracaena steudneri*, *D. afromontana*, *Galiniera saxifraga* and *Coffea arabica*. Ground herbs include false cardamom (*Afromomum corrorima*).

Upland Humid Forest Vegetation- This vegetation occurs at altitudes between 2450 - 2800 m a.s.l and characterized by tree and shrub species such as *Hagenia abyssinica*, *Ilex mitis*, *Myrsine melanophloeos* (*Rapania melanophloeos*), *Maesa lanceolata* and *Bersama abyssinica*.

Arundinaria /Bamboo Thicket- This vegetation occurs at altitudes between 2400-3050 m a.s.l and characterized by bamboo thicket either in pure stands or may exist in mixture with trees, including *H. abyssinica, M. melanophloeos*, and *Hypericum revolutum*.

4.2. Methodology

4.2.1. Site selection

The Gimbo District has 40 Kebeles and for 10% sampling size, four Kebeles were chosen based on the land use map of the woreda. Based on the land use map, among the four kebeles chosen for the study, two Kebeles (Yeyebito and Bita Chega) were chosen from the undisturbed montane forest site and the other two Kebeles namely Keya Kela and Qeja Araba were chosen from the disturbed montane forest sites. The other rational for choosing the four Kebeles was forest management practices, proximity to the big towns and NTFPs potential. Out of the forest found within the four Kebeles, the forest found within the two Kebeles of Yeyebito and Bita Chega is managed by participatory forest management intervention while the forest found within the other two Kebeles is not managed by participatory forest management intervention.

4.2.2. Informants selection

From each kebele, due to the limited time and budget available during the data collection phase of this study, 5% of the households were interviewed in similar manner with that of Makenya (2005). Hence Cotton (1996) reported when using semi structured interviews, small number of respondents can be enough for ethnobotanical surveys. Therfore, the number of respondents/informants summed up to 86(25, 21, 15, and 25). Again 40 (10 from each of the four kebeles) resource people were chosen to be key informants. The key informants were selected in such a way that they represent different age groups and sex.

It was learned from Cotton (1996) that by selecting the respondants randomly the probability of gaining general information will be higher and selecting respondants systematically and by the help of local administrators ensures the gathering of detailed facts about the subject matter of particular interest. Accordingly, since most of the resource persons with good knowledge about NTFPs in the study area are believed to be elderly men and women, most of the key informants were chosen to be with ages greater than 40. And the rest of the key informants were selected in such a way that they represent different sex and age groups and were picked randomly. Finally, the informants stratification in terms of age and sex appears to be as it is provided in Appendix 3. Therefore, seven (17.5%) out of the forty key informants were female, from the total forty key informants, three (7.5%) were with the age range of 14-19, seven (17.5%) with ages ranging from 20 up to 29, four (10%) were with ages ranging from 30 up to 39, 15 (37.5) with ages ranging from 40 up to 49 and the rest eleven (27.5%) of the key informants were 50 and above.

4.2.3. Reconnaissance survey

Reconnaissance survey was carried out from February 1- February 15, 2006. During the reconnaissance survey the researcher got familiarized with the plant species present in the area and a check list of species observed was prepared, key informants were selected, the questionnaire was pre-tested, the actual situation of the site was evaluated and accordingly the suitable sampling design and lay out for the vegetation data collection was determined and a GPS reading of the four kebeles (study sites) of the study area was taken which enabled the researcher to plot the map of the study area.

4.2.4. Data collection

Data collection was carried out from March 1 - April 1, 2006 and from May 22 - June 30, 2006. The total time spent during the reconnaissance survey and data collection was ample enough in that the researcher was able to get familiarized with the geography and the people of the area. This intern, helped to win the trust of the people during interviews and ethnobotanical data collection.

a) Ethnobotanical data collection

A Participatory Rural Appraisal technique (PRA), as explained by Grenier (1998) and Martin (1995), was employed. The PRA techniques include; semi-structured interviewing, free listing, preference ranking and direct observation.

Semi-structured interview – some predetermined questions and topics were prepared (Annex 1), but also leaving some room for similar topics of interest to be persused as the interview develops. The questions were both open ended and closed. According to Newell (1993), open-ended questions will allow individuals to interact in any way they wish. The questions were translated into Amharic. The interview was conducted in an informal and conversational way but carefully controlled. The survey was done in Yeyobito (490 households), Bita Chega (419 households), Keyakela (293 households) and Queja Araba (494 households). The sample size in each kebele was made to be 5% of the total number of households. Therefore, in total 86 households were randomly surveyed. Meaning for each kebele 25 house holds in Yeyebito, 21 in Bita chega, 15 in Keyakela and 25 in Queja Araba were surveyed.

In this study semi structure interviews were carried out in order to determine the NTFPs known to be found in the study area and evaluate their conservation status. Household dependency on NTFPs as compared to agriculture (dairy and crops) was also evaluated using the interview results.

Free listing – volunteer informants were used to free list the NTFPs. This list includes local names, uses and part of the plants or the NTFPs used and was accompanied by the display of the NTFPs which were able to be located.

To do the free listing, 10 key informants were chosen from each of the 4 kebeles (the study site). And according to the free listing exercise, for each of the NTFPs and NTFPs categories identified, plant and animal species and their parts used as NTFP were also identified.

Preference ranking – NTFPs and species were ranked based on a 1-5 scale mark given by the key informants preference. Wherein a very highly preferred NTFP or species gets the highest mark (5) and the least prefferd NTFP or species gets the least mark (1). This can help know which NTFPs or species are highly or least preferred or which have few or more alternatives.

Guided field walk and direct observation – according to Cunningham (2001), observation is an appropriate method to gather data on more sensitive issues. Therefore, field observation was used in the PRA exercise. This was aided by prepared questions (Annex 4).

b) Vegetation data collection

Vegetation data was important for this study in that it helped in determining the status of some of the most important NTFPs. Due to the rugged terrain of most of the forest parts and due to the limited time and budget available during this study, transect laying was not favored but rather more simpler technique was used to lay the plots for vegetation data collection. Therefore, random walking technique (Kent and Coker, 1994) was used. Mean while, begining from a certain point within the forest, based on randomly drawn numbers from 0-360 to determine direction and from 20,50,100,200,500 to determine distance, the the sample plots were laid. Suunto compass was used to guide the direction while walking to the next plot and pacing was used to measure the distance to the next plot.

Due to the homoginiety of the forest physiognomy in the study area, stratification of the forest was not fovoured. However, it was made certain that the reverine forest patches within the forest were not left out. So 4 sample plots were laid within the reverine forest patches of the forest under study. And the rest 56 plots were ramdomly selected. By so doing, 30 sample plots within the PFM forest and 30 plots within the free access forest were laid making the total number of sample plots 60, and making the total area sampled 5.4 ha where each plot is with an area of 0.9ha.

Square sample plots with the dimension 30 m X 30 m were used in this study as used by Tamrat Bekele (1994). Inside the 30 m X 30 m, a 5 m X 5 m and a 2 m X 2 m sub plots (Kent and Coker, 1994) were laid to measure the shrubs and herbs respectively.

- ➤ Within the 30 m X 30 m plot every tree and lianas were counted and recorded. For all the trees, with circumference of ≥4 cm, at the breast height, circumferance at the breast height (CBH) and height measurements were taken. To measure the CBH diameter tape was used and to measure the height, hypsometer was used. The CBH was converted to the Diameter at breast height (DBH) by dividing the CBH with 3.14. The DBH was therefore, used in data analysis and interpretation.
- Within the 5 m X 5 m plots all shrubs were counted per individual species and recorded.
- Within the 2 m X 2 m plots, all herbs were counted per individual species and recorded.

Plant specimens were collected for most species and brought back from the field so that by comparing to authenticated specimens housed at the National Herbarium (ETH) they can be identified. For most tree species whose names were obviously known they were identified on the field. The use of local names and all the published volumes of Flora of Ethiopia and Eritrea was also important for this study.

In this study vegetation data were mainly collected so that the status of some of the most important NTFPs and plant species population structure can be determined and evaluated. And also to determine the status of the vegetation structure in the study area as a whole and even compare the vegetation structure and biodiversity patterns between the two forest patches one managed by PFM and the other not so but is freely accessed.

c) Market data collection

Market data was collected mainly in Bonga town yet some information was gathered in Wushwush and Ufa markets aswell. Data was collected by interviewing different section

of the society during market days. The checklist of questiones possed to respondants was as indicated on Annex 5.

d) Team composition

The research team included; the researcher (with the background in Forestry and Botany), forty key informants selected from the four kebeles of the study area, one house hold member from the 5% of the households found in the four kebeles of the study area, any one of the community member who was contacted by chance and provided valuable information, 12 field assistants (3 from each of the four kebeles) who have good knowledge about the vegetation of the study site.

4.3. Data Analysis

4.3.1. Vegetation data analysis

The status of NTFPs was examined by estimating stem density, importance value index (IVI), forest structure, population structure and biodiversity pattern.

4.3.1.1. Stem density

Stem density of the trees and shrubs was used to compare the two types of forests (the PFM and free access forests) for total biomass. Number of individual trees in the total sample plots were counted and converted to per hectare basis. And similarly the number of shrub individuals was counted in all the sample plots and was converted to per hectare basis. Statistical packages for social sciences (SPSS/13) was used in determining standard error of the mean. Then the density of trees and shrubs was ploted for both types of forets using Microsoft exel. A two tailed student t- test was carried out using SPSS/13.

4.3.1.2. Importance value index

Importance Value Index (IVI) allows a comparison of ecological significance of species in a given forest type and depicts the sociological structure of a population in its totality in the community (Lamprechet, 1989). Importance value index is a good index for summarizing vegetation characteristics and ranking of species (Kendeya Gebrehiwot, 2003).

The IVI was calculated as the sum of relative frequency, relative density and relative basal area (Colinvaux, 1986; Abayneh Derero *et al.*, 2003).

- Relative frequency was calculated by multiplying the ratio of absolute frequency of a species to the sum of absolute frequencies of all the species by 100 (Colinvaux, 1986; Abayneh Derero *et al*, 2003). Absolute frequency of a species was obtained by counting the number of plots in which the given species was recorded (Colinvaux, 1986; Kent and Coker, 1994; Tadesse Woldemariam, 2003).
- Relative density was calculated by multiplying the ratio of species density/ha of a single species to the sum of species density/ha of all species by 100 (Colinvaux, 1986; Abayneh Derero *et al*, 2003). Density was calculated by the number of individuals of a species per unit area (Abeje *et al.*, 2005).
- Relative basal area was calculated by multiplying the ratio of basal area/ha of a single species to the sum of basal area/ha of all species with 100 (Colinvaux, 1986; Abayneh Derero *et al*, 2003). Basal area of a species was calculated by the formula;

 $BA = \underline{\Pi (DBH)^2} \text{ where } BA = Basal \text{ area}$ $4 \qquad DBH = \text{Diameter at breast height}(1.3 \text{ m above the ground})$ $\Pi = 3.14$

Then for comparison the IVI values were ploted on a bar graph of seven IVI classes namely; IVI class 1(0-5), IVI class 2 (5-10), IVI class 3 (10-15), IVI class 4 (15-20), IVI class 5 (20-25), IVI class 6 (25-30) and IVI class 7 (>30).

4.3.1.3. Forest structure

The population structure was determined by analyzing the height and diameter distribution patterns. This was helpful to determine the age of the foret, level of disturbance.

<u>Tree height distribution</u>: to develop the tree height distribution of the forest in the study area,10 height classes; height class1 (with trees <5 m), height class 2 (5-10 m), height class 3 (10-15), height class 4 (15-20), height class 5 (20-25), height class 6 (25-30),

height class 7 (30-35), height class 8 (35-40), height class 9 (40-45) and height class 10 (\geq 45 m) was formed based on the data obtained. Then the number of individuals corresponding to each height class was recorded. Then, the number of individuals versus the height classes was plotted on a bar graph using Windows Microsoft excel (Fig. 10).

<u>Tree diameter distribution</u>: The pattern of diameter distribution is usually used to represent the population structure of a forest (Khan *et al.*, 1987). To develop the tree diameter distribution of the forest in the study area, 11 diameter classes; diameter class 1 (1.2-5 cm), diameter class 2 (5-10 cm), diameter class 3 (10-25 cm), diameter class 4 (25-40 cm), diameter class 5 (40-55 cm), diameter class 6 (55-70 cm), diameter class 7 (70-85 cm), diameter class 8 (85-100 cm), diameter class 9 (100-115 cm), diameter class 10 (115-130 cm) and diameter class 11 (\geq 130 cm) was formed based on the data obtained. Then, the number of individuals corresponding to each diameter class was recorded. Then the number of individuals versus the diameter classes was plotted on a bar graph using Windows Microsoft excel (Fig. 11).

4.3.1.4. Population structure

In addition to the forest structure, the population structure of the nine tree species, identified to be most important NTFPs source based on the preference ranking exercise and the interview result, was carried out. The nine tree species are; *Olea welwitschii*, *Scheffleria abyssinica, Syzygium guineense, Fagaropsis angolensis, Phoenix reclinata, Euphorbia ampliphylla, Elaeodendron buchananii, Ehretia cymosa* and *Millettia ferruginea*.

Although *Vernonia amygdalina* was an important tree species in that it is known to be the source of pollen and nectar for the bees to make honey, there was not any big individual encountered in the study area. Therefore, despite the importance, it was not possible to develop the population distribution of this species.

Population structure is the numerical description of individuals of different size or age within a population at a given moment of time (Peters, 1996). To determine the

population structure of the forests under study, the tree height distribution and tree diameter distribution was used.

To develop the population structure of the trees of interest, based on the data obtained, diameter classes were formed where diameter class 1 was (1.2-4 cm), diameter class 2 (4-10 cm), dimeter class 3 (10-20 cm), dimeter class 4 (20-60 cm), diameter class 5 (60-100 cm) and diameter class 6 (\geq 100 cm). The number of individuals corresponding to each diameter class was recorded. Then the number of individuals versus the diameter classes was plotted on a bar graph using Windows Microsoft excel (Fig.12 & 13).

4.3.1.5. Biodiversity

Biodiversity was determined using Shannon Weaver diversity index (Flower and Cohen, 1992) as follows;

 $H' = -\sum (Pi \ln Pi)$ where Pi denotes the proportion of a particular species in a sample.

The Shannon weaver index takes into account species richness and proportional abundance to calculate a single diversity measure. Therefore, in effect it is a measure of evenness of species abundance in a sample, with more even samples gaining higher value (Makenya, 2005).

4.3.2. Ethnobotanical data analysis

Data obtained from semi-structured interviews was coded in such a way that the objectives of the questions can be addressed and then processed by using SPSS13. Then the result was described mainly in percentages. Also preference ranking was carried out whereby the results are displayed in the form of tables.

5. RESULTS

5.1. NTFPs Resource Base of Gimbo District

After interviewing 86 households and after discussions with the key informants and personal observation, 26 NTFPs and NTFPs categories were identified (Table 5). Out of the 86 respondents 13.8% recognized all the 26 NTFPs and NTFPs categories 53% recognized 19 of the NTFPs and NTFPs categories and all of the respondents recognized 7 of NTFPs and NTFPs categories namely house construction materials, wood for farm impliments, firewood, coffee, honey, kororima and wild pepper.

From personal investigation, it was also noted that the area has a potential for civet musk, pollen, propolis and royal jelly cultivation and production. However, these NTFPs are not developed in the study area.

No	NTFPs	Important Plant/animal	Important Plant/animal
		Forest species giving	parts used
1	House construction material	Elaeodendron buchananii Olea welwitschii Oxyanthus speciosus Syzygium guineense Eucalyptus globulus and Eucalyptus comaldulensis Phoenix reclinata Dracaena fragrans Euphorbia ampliphylla Rhytigyna neglecta Dalbergia lactea Cyathea manniana Pouteria adolfi- friedericii Sapium ellipticum Protea gaguedi	Stem/trunks, branches, leaves

Table 5: List of NTFPs in the Gimbo District

		Arundinaria alpina		
		Cyperus dichroostachyus		
	-	Schefflera abyssinica		
		Vernonia amygdalina		
2	Honey and beesway	Polyscias fulva	Flowers(nectar&nollen)	
2	Honey and beeswax	Maesa lanceolata		
		Coffea arabica		
		Bidens prestinaria		
		Olea welwitschii		
		Sapium ellipticum		
		Chionanthus mildbraedii		
		Ole a welwitschii,		
		Cordia Africana,		
		Rothmannia urcelliformis		
3	Wood for farm impliments	Galiniera saxifraga	Stem, root	
		Vepris dainelli		
	-	Euphorbia ampliphylla		
1	Dashiya making	Polyscias fulva	Stem/trunk	
4	beenive making	Croton mycrostachyus		
		Pouteria adolfi- friedericii		
5	Firewood	All woody species exept	Stem,Branch,leaves	
		Euphorbia ampliphylla and		
		Cyathea manniana		
6	Lianas		Stem	
7	coffee	Coffea arabica	Fruit, leaves, stem	
8	Medicinal plants	See Table 7	Leaves, Roots, barks	
9	Rhamnus prinioides	Rhamnus prinioides	Leaves, branchs, stem	
	1	Phoenix reclinata		
10		Dracaena steudneri	Trunk,leaves,fruits	
10	Palms and Dracaenas	Dracaena fragnans		
		Dracaena afromontana		
11	Korroroma	Aframomum corrorima	Capsule(seeds)	
12	Fagaropsis angolensis	Fagaropsis angolensis	Fruit,bark	
		Syzygium guineense	Fruits, leaves	

		Phoenix reclinata		
13	Edible plants	Peponium vogelii		
14	Mushrooms/Bracket fungi	Polyporus spp, Macrolepiota spp, Agaricus spp	The cape(pileus)	
15	Edible wild animals	Tragelaphus scriptus(miniliki), Sylvicapra grimmia, Cyncerus caffer, Potomachores porkes		
16	Charcoal	Millettia ferruginea, Syzygium guineense.	Stem	
17	Wild pepper	Piper capense	Fruit	
		Oplismenus hirtellus		
		Vernonia amygdalina		
18	Cattle forage	Melletia fruginea	The leaves	
		Dracaena fragnans		
		Phaulopsis imbricata		
		Isoglossa punctata		
19	Catha edulis	Catha edulis	Leaf	
20	Euphorbia ampliphylla	Euphorbia ampliphylla	Trunk/stem	
21	Dies	Rothmannia urcelliformis	Fruit	
22	Fern Tree	Cyathea manniana	Trunk/stem	
23	Latex	Tiliachora fungifera	The milky exudates	
		Dombeya torrida, Syzygium		
24	Donas	guineense, Hibiscus	Bark	
24	Kopes	berberidifolius		
		Phoenix reclinata	leaf	
25	Ground honey (locally called Tazma maar)	-	-	
26	Household tools like plates, vessels, horn, drum, barrel, axe handle, grinders (mukecha &	Schefflera abyssinica		
	zenezena), cart	Pouteria adolfi- friedericii	stem	
		Cordia africana		
		Ficus sur		

Also from the interviewed households, 30 households were to be Kafas and the rest 22, 12, 8, 8, 6 households were Menjas, Oromos, Hadiyas, Amaharas and Tigrays respectively. From the households survey, it was understood that all of the respondents are dependent on the NTFPs to meet their construction, firewood & charcoal, medicinal and other needs. However, it was also understood that the degree of dependency vary with the respondents ethnic origin (Annex 6).

5.1.1. Wood for house construction

In Gimbo District, as in most parts of Ethiopia, there are two types of houses that are built. The two common types of houses are referred to as traditional (mud hut) and modern (mud house). The basic difference between the two types of houses is the shape of the houses and their roof. The traditional (mud hut) is circular in shape while the modern one is square or rectangular in shape. The roof of the traditional house is thatched while the modern one is covered by galvanized iron sheets. The traditional house is built using lianas instead of nail for forming the frame work of the wall and the roof. The modern house on the other hand is built using nails while forming the frame of the roof and the wall.

Tradition	al house(mud hut)	Modern house(mud house)			
Purpose	Species used	Purpose	Species used		
Mager*	Dracaena fragrans, Cordia africana, Dalbergia lactea, Rytigynia neglecta	Mager*	Elaeodendron buchananii, Oxyanthus speciosus., Olea welwitschii, Syzygium guineense		
Meseso*	Syzygium guineense	Kuami*	Elaeodendron buchananii, Olea welwitschii, Oxyanthus speciosus., Eucalyptus globulus and Eucalyptus comaldulensis		
Balla*	Olea welwitschii	Wall weraj*	E.globulose and E.comaldulensis, Olea welwitschii, Elaeodendron buchananii		
Wall	Phoenix reclinata, Pouteria adolfi- friedericii, Syzygium guineese, Elaeodendron buchananii, Sapium ellipticum, Cyathea manniana	Demdimat*	Eucalyptus, Olea welwitschii, Elaeodendron buchananii		
Roof	Euphorbia ampliphylla, Syzygium	Wall	Phoenix reclinata,		

Table 6: List of Plant species in and around Gimbo District used to construct houses

	guineense, Oxyanthus speciosus.,bamboo		Elaeodendron buchananii, Eucalyptus globulose and Eucalyptus comaldulensis
Roof	Olea welwitschii, Elaeodendron buchananii	-	-
weraj*			
Roof	Phoenix reclinata, Cyperus	-	-
thatchin	dichroostachyus, straws from cereal		
g	crops		

N.B;* refers to the local naming in Amharic

Figure 3: Cyathea manniana, an important tree fern used for house construction

5.1.2. Honey

In and around Gimbo District there are two types of honey. One is white and cruder while the other one is brown and less crude. The white one is made from the flowers of *Schefflera abyssinica* while the brown one is made from the flowers of *Vernonia amygdalina*.

In Gimbo District, the white honey is common. Although the bee makes the honey from both *Schefflera abyssinica* and *Vernonia amygdalina* resources, the honey from *Vernonia amygdalina* (brown honey) is not harvested. This is done because, if the brown honey is harvested the bee will be short of food and will not produce more white honey.

Therefore, although it is possible to harvest the brown honey, the farmers leave it to be fed by the bees and the bee will make more white honey. which is the honey harvested for use at home or for sale.

Apart from *Schefflera abyssinica* and *Vernonia amygdalina*, there are many other plants that are important in honey production in Gimbo District. Their importance is in two ways; one is for hanging the traditional beehives and the other is as a source of nectar. The plant species that are important for hanging the traditional beehives are; *Polyscias fulva*, *Croton macrostachyus*, *Albizia gummiferia*, *Syzygium guineense*, *Sapium ellipticum*, *Millettia ferruginea*, *Elaeodendron buchananii*, *Ficus sur*, *Pouteria adolfifiedericii*, *Cordia africana*, *Ficus sur*. And the plant species that are source of nectar next to *Schefflera absyssinica* and *Vernonia amygdalina* are; *Polyscias fulva*, *Maesa lanceolata*, *Bidens prestinaria*, *Coffea arabica*, *Olea welwitschii* and *Sapium ellipticum*. The flower of *Clematis hirusta* (a liana), according to informants information, flowers every six years and it is very fatal for bees if they happen to suck the nectar.

Honey is locally used to make local beverages like"Tej" and "Tella", it is also a good source of income for the people of Gimbo; it is source of food and it is also used to treat some illnesses like cold, stomach discomforts and wounds.

5.1.3. Wood for farm impliments

People in and around Gimbo District use different kinds of wood for construction of farm impliments. The most important types of wood used to make the farm impliments are woods from *Chionanthus mildbraedii* and *Olea welwitschii* to make MOFER(a woden structure of the traditional Ethiopian ploughing tool that extends from the kember to the ground), *Galiniera saxifraga*, *Olea welwitschii* and *Cordia africana* to make KEMBER(a woden structure of the traditional Ethiopian ploughing tool that restes on the oxen), *Olea welwitschii*, *Chionathus mildbraedii*, *Vepris dainelli* and *Rothnannia urcelliformis* to make ERF (a woden structure of the traditional Ethiopian ploughing tool that the farmer holds while manipulating the poughing process), the root of *Olea welwitschi* is used to

make the DEGER (a small woden structure of the traditional Ethiopian ploughing tool that s useful in tieing the *Erf* and *Mofer* on the plough ground).

5.1.4. Beehive

A beehive is mainly made from *Euphorbia ampliphylla* and *Polyscias fulva* stems. It can also be made from the stem of *Croton macrostachyus* and *potuera adolfi-friedericii*. To construct a beehive what the farmers do is first they fell the desired tree. Then, the tree is cut into one meter logs. Each one meter log is split into two along its length. Then each half log is hollowed so that when the two half logs are brought together they will form a beehive.

The two hollowed half logs are tied together using lianas. To protect the bee from rain and heat, the beehive is finally covered with grasses, leaves of *Phoenix reclinata* or bamboo sheathes.

Figure 4: A common traditional beehive (covered with bamboo sheath)

5.1.5. Firewood

Firewood is the most important if not the only source of energy in most kebeles of the Gimbo District. Firewood is obtained from the natural forest. Most of the people of the Gimbo District collect firewood themselves. However, in some places (like in Bonga, Wushwush and Uffa towns), the people buy the firewood from the ambulatory vendors for household uses.

The plant species that are used as firewood are all woody species. From trees there are only two species that are not used as firewood. These are; *Cyathea manniana* and *Euphorbia ampliphylla*.

Figure 5: An ambulatory vendor in Bonga town carrying fuelwood for sell.

5.1.6. Climbers/runners/ vines stem

Climbers and vines are very important NTFPs in Kaffa zone. Among the many lianas that are found within the Gimbo district forests, the uses of *Tiliacora troupinii*, *Cisscus quadriangulata*, *Landolphia buchananii*, *Clematis longicauda*, *Jasmenium abyssinica*, *Comperatum paniculatum*, *Clematis hirsuta* and *Guania longispicata* is recognized by the local people.

Lianas are considered as a nail in house construction specially while constructing traditional huts. The stems of vines are used to hold the different parts of the house in similar manner that a nail does. *Tiliacora troupinii* is the most preferred vine for the purpose of house construction since it is very strong. If *Tiliacora troupinii* is not available, then *Cisscus quadriangulata* and *Landolphia buchananii* can be alternatives. But they are not as strong as the *Tiliacora troupinii*. *Landolpia buchananii* climber, apart from its use in house construction, is well known by the milky exudation that is apparent

when its stem is cut or wounded. This milky exudate is used by kids to make a ball that has rebounding ability.

Clematis hirsuta is one of the climbers found within the Bonga forest and is very important in that it provides clean drinking water when the stem is cut. The water coming out of this stem is also used as an eye ointment. But the best climber with regards to providing drinking water is the climber called *Guania longispicata*. This climber provides drinking water better than *Clematis hirsuta* both in quantity and quality.

5.1.7. Coffee

The coffee species found in the forests of Gimbo District is *Coffea arabica. Coffea arabica has several uses in Gimbo District. The main use is for drinking. The beans of C. arabica are used to make coffee drink. The leaves are also used to make a drinking coffee. The dried branches and leaves are also used as firewood. The sterile <i>C. arabica trunks are also used to make arrow handle and are also used as walking stick. Apart from the above uses Coffea arabica beans are good source of income to local farmers. The use of <i>C. arabica* as medicine is also known by the local people. Coffee is again important socio-culturally. People in the study area are seen to discuss many ideas sitting around coffee ceremony and it is often coffee that they invite their guests.

5.1.8. Medicinal plants

About 45 plant species were dealt by this study for their assumed medicinal properties. Out of the 45 plant species described by the local people as the major medicinal plants, 51.11% were herbs, 22.22% trees, 20% shrubs and 6.66% climbers. The local people also described verbally that some paracitic plants that grows on *Coffea arabica, Euphorbia ampliphylla, Croton macrostachyus, Syzygium guineense, catha edulis, and Foniculum vulgare* are used to treat some ailments (Table 7). And most of the medicinal plants are needed for their leaves (Figure 6).

Table 7: List of plant species in Gimbo District with their medicinal values, ailments, parts used, recipe, prescription and mode o	f
action.	

No	Plant species	Habit	Family	Used to treat the	Plant part(s)	Recipe	Prescription	Mode of
	name			disease	used			action
1	Ajuga alba	Н	Lamiaceae	Antrax,kurtmat	Leaf + petiole,	Squashed +Areki,	Drinking,	Cure,
					Leaf + petiole	Squashed +Areki	Drinking	cure
2	Anethum	Н	Apiaceae	STD(name not	Root+leaf	squashed	drinking	cure
	foeniculum			verified), mech and many				
				others(multipurpose)				
3	Colocasia	Н	Araceae	Gonorria(chebt)	Root	Squash +boiled	drinking	cure
	esculenata							
4	Cordia africana	Т	Boraginaceae	Tonsillitis, constipication	Bark,bark	Placemet, powered	Chewing,	Cure,
				of man and cattle			drinking	cure
5	Dalbergia lactea	Sh	Fabaceae/	Snake bite, scorpion	Leaf, leaf	Squashing,	Drinking,	Cure,
			Papelinoidae	bite, spider poisioning,		squeezing	rubbing	cure
				Cattele skin parasite				
6	Embelia	Cl	Myrsinaceae	Tape worm	Fruit	powdering	drinking	cure
	schimperi							
7	Impatiens	Н	Baslsaminaceae	cholera	Leaf	squashed	drinking	cure
	ethiopica							
8	Lannea	Н	Anacardiaceae	Stomach problem	Leaf	squashed	drinking	cure
	schimperi							

9	Lantana camara	Н	Verbenaceae	Troat infections	Leaf+salted	Squashed	drinking	cure
10	Nicotiana	Sh	Solanaceae	cholera	Leaf + petiole	squashed	drinking	cure
	tabacum				_	_		
11	Persicaria	Н	Polygonaceae	tonsillitis	Root	Placemet	Chewing	cure
	senegalensis							
12	Psychotria	Т	Rubiaceae	Danrouff of human and	Leaf	squashed	rubbing	Cure,
	orophila			cattele, boldness in human				prevention
13	Senna	Н	Fabaceae/	Snake bite, scorpion	Leaf	Squashing	Drinking	cure
14	septemtrionalis	m/01 /	Cesalpinoidae	bite,spider poisioning	TC			
14	Solanecio gigas	1/Sh/	Asteraceae	Anthrax	Leaf	-	-	cure
15	Taalag nahilig	Н Т	Dutaces	Stomach problem	Loof	aquashad	duintring	011#0
13 16	Teclea noollis	I U	Rulaceae	Bod spirit	Leal	squashed	urinking	cure
10	schimparianum	п	Kanunculaceae	Dau spilit	Leai	squashed	Tubbilig	prevenuon
X	Parasitic nlants							
Δ	of							
	1)Coffea arabica		-	Kurtmat	-	-	-	-
	2)Euphorbia		-	Tuberculosis	-	-	-	-
	ampliphylla							
	3)Croton		-	Kurtamat	-	-	-	-
	macrostachyus							
	4)Syzygium		-	Majic	-	-	-	-
	guineense							
	5)catha edulis		-	Kurtmat	-	-	-	-
	6)Foniculum		-	Boils	-	-	-	-
15	vulgare	**			a 1	1		
17	Aframomum	Н	Zingebelaceae	Stomachache	Capsule	placement	Bite+chew	cure
	corrorima							
19	Amorphonhallus	Ц	Araceae	Dermal infaction	Tuber	nlacement	rubbing	cure
10	ппогрнорниния	11	nialtat		1 0001	placement	ruoonig	Cuit
	gallaensis							
19	Asparagus	Н	Asparagaceae	Gohonoria	Root	squashed	Drinking	Cure
	asparagoidas						-	
	uspurugoides							
20	Catha edulis	Sh	Celastraceae	STD(name not verified)	Leaf	Boiled with aditives	Drinking	cure

21	Celtis africana	Т	Ulmaceae	Cattle tuberculosis	Bark(middle	placemet	Nose	Cure
					layer)		application	
22	Clausena anisata	Sh	Rutaceae	Hens, chicken disease (commonly known as kinkin)	Leaf,bark	squashes	Washing	cure
23	Clematis longicauda	Cl	Ranunculaceae	Teeth disease	Leaf	squeezed	Placement	Cure
24	Coffea arabica	Sh	Rubiaceae	Stomachache, amoebae	Beans	Rosted+powdered	Eating, drinking	Prevention + cure
25	Croton macrostacyus	Т	Euphorbiaceae	stomachache	Leaf	squashed	drink	Cure
26	Dodonaea angustifolia	Sh	Sapindaceae	Stomachache	Leaf	-	-	-
27	Ehretia cymosa	Т	Boraginaceae	Rebis, bad sperit	Root	squashed	Drinking	Cure
28	Gutenbergia rueppellii	Cl	Asteraceae	stomachache	Leaf tip	squashed	drink	Cure
29	Isoglosa somalensis	Н	Acanthaceae	Teeth infection	Leaf	squashed	placement	cure
30	Justicia schimperiana	Sh	Acanthaceae	Gum infection	Fruit	burned	smoking	cure
31	Lannea fruticosa	Т	Anacardiaceae	Leg and hand breakage	Leaf	toasted	tying	cure
32	Leonotis	Н	Lamiaceae	Eye disease, fever(mich)	Leaf	Squashed, squashed	Ointment,	cure
	neptifolia						drinking	
33	Nelsonia canescens	Н	Acanthaceae	Feet infection(fungus)	Leaf	toasted	rubbing	cure
34	Pentas cafensis	Н	Rubiaceae	Eye disease	Leaf	squashed	Ointment	Cure
35	Phaulopsis imbricata	Н	Acanthaceae	Influenza	Leaf	Squashed +boiled	drinking	cure
36	Ranunculus	Н	Ranunculaceae	Teeth disease,eye disease	Leaf	-	-	cure

		-						
	multifidus							
37	Rhamnus prinoides	Sh	Rhamnaceae	Syphilis(chebt)	Leaf,Root,most importantly stem	Squashed + boiled	drinking	cure
38	Sida tenuicarpa	Sh/T	Malvaceae	Child diseases	Root	squashed	Drinking	Cure
39	Solancio manni	Н	Asteraceae	Fever (mich)	Leaf	Squashed + coffee	drink	cure
40	Triumfetta brachyceras	H	Rubiaceae	Child, cattle constipation	Whole plant	Squashing plants to get the mucus like exudate	Feeding the exudate	cure
41	Urera hypselodendron	H	Urticaceae	Increase immunity, additional food for babies	Leaf	Boiled	drinking	Cure
42	Utrica simensis	Н	Urticaceae	Fever (mich)	Leaf	Squashed+ coffee	drink	cure
43	Vepris dainelli	Т	Rutaceae	Breast disease	Fruit	-	-	-
44	Verbena officinalis	Н	Verbinaceae	Maleria	Whole plant	-	-	cure
45	Vernonia auriculiferaa	T	Asteraceae	wounds	Leaf	Toasted	Placement	Cure

5.1.9. Rhamnus prinioides L'Herit

Rhamnus prinioides is an important spice in "Gimbo" used to make local beverages namely "Tella", "Tej" and "Areki". The leaves of *R. prinioides* is used to make "Tella" and the stem and the branches are used for making "Tej" and "Areki".

5.1.10. Palms and dracaenas

There are four species of palms and dracaenas in Gimbo District. These are *phoenix reclinata*, *Dracaena steudneri*, *D. afromontana* and *D. fragrans*. *Phoenix reclinata* has several uses; its leaves are used to make carpets, bags, ropes, and are also used to cover the roof of a hut. Its trunk is used widely for making culverts and even bridges, for house contruction and gate making. The fruit of *Phoenix reclinata* is also edible.

The carpets made from *Phoenix reclinata* leaves are very important in and around Gimbo District in that they are used as carpet, as mattresses and most importantly as coffins. Elderly key informant described *Phoenix reclinata* as being every thing to the people of Kaffa.

The other three important species of this category in Gimbo forests; namely *Dracaena steudneri*, *D.afromontana* and *D. fragrans* are usually used as cattle feed during the dry season. The leaf of *Dracaena steudneri* is also used as a replacement for *Ensete ventricosum* leaves for foiling the paste of bread and "Kocho" while baking. And *D. fragrans* is used as live fence. This species easily propagates vegetatively, what the local people do is go to the forest cut the plant, and plant cuttings around their house boundary that will latter become a live fence.

a) The trunks of *Phoenix reclinata* used to make culverts

b) The trunks of *Phoenix reclinata* used to make a fence/gate

c) *Dracaena steudneri* at the edge of the Forest in "Keya kella" kebele

d) *Dracaena fragnans* a common live fence

Figure 7: Palms and dracaenas of the Gimbo District and their uses

5.1.11. Aframomum corrorima (Braun) Jansen

Aframomum corrorima, in Gimbo District, is mainly used as a source of income. It is also used to spice coffee (most importantly tea made from coffee leaves). The capsule of *Aframomum corrorima* is also used to relieve stomach discomforts and most people chew the ripen capsule of *Aframomum corrorima* when they suffer from stomach discomforts.

5.1.12. Fagaropsis angolensis

The fruit of *Fagaropsis angolensis* is an important spice in Gimbo District. The fruit is put in milk and coffee to flavor them. One of the informants reported that, if a person starts to drink milk and coffee spiced with this fruit, then he/she would never prefer to drink coffee or milk without being spiced with this fruit.

The bark of *Fagaropsis angolensis* is mixed with salt and fed to cows so that the milk production improves and tastes better. It is also believed that when the bark of *Fagaropsis angolensis* is mixed with salt and given to cattle, the cattle's resistance to diseases will be boosted and the cattle will be very healthy and productive.

5.1.13. Edible wild plants and fruits

It was learnt that the wild plants and fruits that are edible in and around Gimbo District are, the fruits of *Phoneix reclinata*, *Syzygium guineense*, *Rubus steudneri* and *Peponium vogelii*. The fruit of *Peponium vogelii* is very important to the local people in that it is known to treat Gastric illnesses.

5.1.14. Mushrooms/Bracket fungus

There are edible and non-edible mushrooms recognized in Gimbo District. According to respondents, those non-edible mushrooms do not have good appearance and it is believed that when some body passes by these mushrooms the teeth will be dislocated. Therefore, when some body passes by these mushrooms, he/she will hold his/her mouth with the hand very tightly. Those non-edible mushrooms are known as "Gash Gaecho" Gash in Kafa means teeth.

Similarly, there are edible and non-edible bracket fungi recognized by the local people in the study area. The edible bracket fungus is the one that grows on the living trees while the non-edible one is the one that grows on the dead trees.

The edible mushrooms are locally known as "Tachi Koyo", "Koto", "Yachae" and the bracket fungus "Earo". According to the taste, the local people prefer (Table 8).

Rank	Scientific name	Local	Description
		name	
1^{st}	Polyporus sp.	Earo	Grows on trees.
2^{nd}	Macrolepiota sp.	Koto	Looks like an umbrella and is big in size. Two of
			the Koto mushroom can feed a family for one meal
3 rd	Agaricus	Tachi	They are very small and grow in cluster.
	bisporous	Koyo	
4^{th}	Agaricus	Yachae	They are very small and grow in cluster; they are as
	campestris		white as a paper.

Table 8: Mushrooms and Bracket fungus preference in Gimbo district

5.1.15. Edible wild animals

Tragelaphus scriptus (miniliki)/ known as "Dikula", *Sylvicapra grimmia* known as "Midako", *Cyncerus caffer* knowen as "Goshe" and Potomachores *porkes* known as "Yechaka Assama" are the wild animals that the local people use as source of bushmeat. However according to the respondents, the number of these animals has reduced very much and it is very hard to find them.

5.1.16. Charcoal

Charcoal is the next most important fuel next to firewood. Charcoal is mostly produced around the towns of Bonga, Wush wush and Ufa. Other wise, charcoal is not widely used

in the rural areas. The most important trees which charcoal is made are *Millettia ferruginea* and *Syzygium guineense*.

5.1.17. Wild pepper

The fruit *of Piper capense* (wild pepper), is a very important spice that is found in Gimbo District. The fruit of this plant is a source of income to the local people. The ripen fruit is sometimes eaten by some people. However, people don't usually prefer to collect this fruit for sale because its price is not paying. People said that a ripen *Piper capense* fruit of 50 kg sac will only weigh 5 kg in dry state which is needed on the market.

5.1.18. Cattle forage

The most important plants used as cattle forages are: the grass species called *Oplismenus hirtellus*, the herbs *Hypoestes forskaolii* and *Achyranthes aspera*. The leaves of *Vernonia amygdalina* and *Millettia ferruginea* are also important cattle forages. *Dracaena fragrans* is very important cattle forage in that it is drought resistant and during the dry seasons the leaves of this plant are important cattle forage.

5.1.19. Catha edulis (Vahl) Frossk.ex Endl

Chata edulis grows wild in side the natural forests and is grown around the farmyards. *Chata edulis* is sold to the market generating income to the farmers and is chewed by people as a stimulant. The plant is also used for THP in the study area.

5.1.20. Dyes

The fruit of *Rothmannia urcelliformis* is used to dye carpets made of *Phoenix reclinata*. The fruits of *Rothmannia urcelliformis* and *Phoenix reclinata* are boild together so that the leaves of *Phoenix reclinata* get coloured. The fruits of *Rothmannia urcelliformis* are also important to blacken traditional clothes at times of griffing ("hazen").

5.1.21. Ropes

Ropes are important in the day-to-day life of the people living in Gimbo District. Ropes are used to tie cattle and are also used to climb trees while hanging beehives. In Gimbo District and the surroundings, there are robes made from fibers of *Ensete ventricosum*, bark of *Dombeya torrida*, bark of *Hibiscus berberidifolius* and *Syzygium guineese*. Ropes are also made from a mixture of *Ensete ventricosum* fibers and *Hibiscus berberidifolius* barks. The rope made from the bark of *Dombeya torrida* is the one used to climb trees while hanging bee hives. Therefore it is this rope that is preferred by the local people for the strength. The ropes made from the fibers of *Ensete ventricosum* and from the bark of *Hibiscus berberidifolius* are comparable in strength but during the rainy season, the *Hibiscus berberidifolius* ropes are preferred as they are not damaged by the rain but rather get stronger as they get wet. The ropes made from *Syzygium guineense* bark are less preferred and are not widely used but can serve some purpose.

5.1.22. Fern tree

Cyathea manniana is a fern tree found in the study area. This plant is very much desired by the local people for house construction and fencing. The reason why this species is favoured is that it cannot be damaged by nematodes and insects, thus making it a very durable construction material.

5.1.23. Latex

Most of the Euphorbiaceae species are known to bear latex. From some of the Euphorbiaceae species in Gimbo District, the latex of *Landolphia buchananii* and *Euphorbia ampliphylla* are recognized by the local people for their use as sticker (paper and money) .The latex of *Landolphia buchananii* is white in colour and it is widely known by the local people for its use by children for making balls.

5.2. NTFPs Preference

Among the 19 NTFPs and NTFPs categories dealt during the preference ranking exercise, the most preferred NTFPs are the house construction materials (Table 9). House

construction materials are the most preferred NTFPs in all the four kebeles. And as can be seen in Table 9, according to the local people's preference honey, wood for farm impliments and firewood are amongst the highly preferred NTFPs in all of the four kebeles, But coffee seems to be preferred in different degrees among the four kebeles in that in the PFM kebeles it is ranked in the fourth and sixth position while in the free access forest it ranked second in both the kebeles.

N o	NTFPs	Study	District rank								
		Yeyeb	vito	to Bita chega		Queja araba		Kayakela		Gimbo	
		Tot.	ran	Tot.	ran	Tot.	ran	Tot.	ran	Tot.	ran
		scor	k	scor	k	scor	k	scor	k	scor	k
		e		e		e		e		e	
1	House		1^{st}		1^{st}	48	1^{st}	48	1^{st}		1^{st}
	construction										
	material	48		48						192	
2	Honey	47	2^{nd}	46	3 rd	40	3 rd	40	4^{th}	173	2^{nd}
3	Wood for farm		3 rd		2^{nd}	40	3 rd	42	3 rd		4^{th}
	impliment	42		47						171	
4	Beehive	40	4^{th}	36	6^{th}	33	5^{th}	33	7 th	142	7 th
5	Firewood		5^{th}		5^{th}	34	4^{th}	37	5^{th}		5^{th}
		39		44						154	
6	Climbers/runner		6 th		5 th	33	5 th	37	5 th		6 th
	s/ vines stem	34		44						148	
7	coffee		6 th		4^{th}	47	2^{nd}	46	2^{nd}		3 rd
		34		45						172	
8	Medicinal plants		7^{th}		7^{th}	33	5 th	30	9 th		8^{th}
	1	31		34						128	
9	Rhamnus		8 th		8^{th}	30	6 th	31	8 th		11^{th}
	prinioides	19		33						113	
10	Phoenix		9 th		10^{th}	33	5 th	36	6 th		10^{th}
	<i>reclinata</i> (palm)	18		30						117	
11	Cardamom		9 th		12^{th}	20	9 th	14	13 th		15 th
		18		29						81	
12	Fagaropsis		10 th		14^{th}	25	8 th	25	11 th		13 th
	angolensis fruit	17		25						92	
13	Edible plants &	16	11^{th}	29	11^{th}	14	11^{th}	13	14^{th}	72	14^{th}

Table 9: NTFPs preference in Gimbo District

	fruits										
14	Mushrooms	14	12^{th}	18	15^{th}	14	11 th	14	13 th	60	18^{th}
15	Edible wild		13 th		9 th	17	10^{th}	11	15^{th}		16 th
	animals	13		32						73	
16	Charcoal		14^{th}		13^{th}	30	6^{th}	33	7^{th}		12^{th}
		11		26						100	
17	Wild pepper	10	15^{th}	29	11^{th}	14	11^{th}	13	14^{th}	66	17^{th}
18	Cattle forage	-	-	34	7^{th}	29	7^{th}	28	10^{th}	91	9 th
19	Catha edulis	-	-	29	11^{th}	20	9 th	20	12^{th}	69	14^{th}

5.3. Species preference for plants of specific NTFPs catagory

Plants are the source of most NTFPs. Therefore the plant species preference was carried out. As can be seen in tables 11-13, *Olea welwitschii* is the most important plant species in that it is used in many ways and is the most preffered species for house construction, farm implements making or firewood. And *Euphorbia ampliphylla*, Ficus sp, *Pouteria adolfi- friedericii, Polyscias fulva, Croton macrostachyus, Brucea antidysenterica* are plant species used by the local people for making beehives (Table10).

N o	Plant species Study sites (kebeles)										District rank		
		Yeyet	oito	Bita c	Bita chega Q		Queja		kela	Gimbo			
					_		araba						
		Tot.	ran	Tot.	ran	Tot.	ran	Tot.	ran	Tot.	ran		
		scor	k	scor	k	scor	k	scor	k	scor	k		
		e		e		e		e		e			
1	Euphorbia	45	1^{st}	40	1^{st}	49	1^{st}	45	1^{st}		1^{st}		
	ampliphylla									179			
2	Ficus sp	30	2^{nd}	30	2^{nd}	45	2^{nd}	30	2^{nd}	135	2^{nd}		
3	Pouteria	28	3 rd	29	$3^{\rm rd}$	30	$3^{\rm rd}$	25	$3^{\rm rd}$		3 rd		
	adolfi-												
	friedericii									112			
4	Polyscias	28	$3^{\rm rd}$	29	$3^{\rm rd}$	25	4^{th}	24	4^{th}		4^{th}		
	fulva									106			
5	Croton	24	4^{th}	24	4^{th}	23	5^{th}	20	5^{th}		5^{th}		
	macrostachyu												
	S									91			
6	Brucea	24	4^{th}	24	4^{th}	20	6^{th}	20	5th		6^{th}		
	antidysenteric												
	a									88			

Table 10: Preference ranking for plants suitable for beehive making

No	Plant species	Study sites (kebeles)					District				
										rank	
		Yeyeb	ito	Bita ch	nega	Queja	araba	Kayak	ela	Gimbo)
		Tot.	rank	Tot.	rank	Tot.	rank	Tot.	rank	Tot.	rank
		score		score		score		score		score	
1	Olea		1^{st}		1^{st}		1^{st}		1^{st}	186	1^{st}
	welwitschii	48		42		48		48			
2	Elaeodendron		3 rd		2^{nd}		2^{nd}		2^{nd}	160	2^{nd}
	buchananii	35		40		40		45			
3	Syzygium		2^{nd}		3^{rd}		2^{nd}		4^{th}	153	3^{rd}
	guineense	36		37		40		40			
4	Cyathea		-		3^{rd}		3^{rd}		6^{th}	108	9th
	manniana	-		37		36		35			
5	Chionanthus		5^{th}		4^{th}		4^{th}		7 th	134	4^{th}
	mildbraedii	33		33		35		33			
6	Rhytigyna		4^{th}		4^{th}		5^{th}		8 th	130	5 th
	neglecta	34		33		33		30			
7	Fagaropsis		-		5^{th}		5^{th}		9 th	88	12^{th}
	angolensis	-		30		30		28			
8	Psychoteria		7^{th}		6^{th}		6^{th}		10^{th}	112	7^{th}
	orophila	30		29		28		25			
9	Oxyanthus sp.	-	-	28	7th	28	7 th	22	12^{th}	78	13 th
10	Allophylous		10^{th}		8^{th}		7 th		12^{th}	93	11^{th}
	abyssinicus	22		27		22		22			
11	Apodytes		-		9 th		8^{th}		13 th	66	15^{th}
	dimidiate	-		25		20		21			
12	Galiniera		9 th		10^{th}		9 th		14^{th}	110	8 th
	saxifraga	27		23		40		20			
13	Pouteria		2^{nd}		-		2^{nd}		3^{rd}	114	6 th
	adolfi-										
	friedericii	36		-		36		42			
14	Protea gaguedi	36	2^{nd}	-	-	30	3 rd	38	5^{th}	104	10^{th}
15	Jastica		6 th		-		6 th		11 th	77	14 th
	shemperiana	32		-		22		23			
16	Prunus		8^{th}		-		8th		12^{th}	50	16^{th}
	africana	28		-		-		22			

Table 11: Preference ranking for plants suitable for house construction

No	Plant species	Study sites (kebeles)					Distric	t			
	_							rank			
		yeyebi	to	Bita ch	nega	Queja	araba	kayako	ela	Gimbo)
		Tot.	rank	Tot.	rank	Tot.	rank	Tot.	rank	Tot.	rank
		score		score		score		score		score	
1	Olea	49	1^{st}	24	1^{st}	50	1^{st}	48	1^{st}		1^{st}
	welwitschii									171	
2	Macaranga	34	2^{nd}	-	-	48	2^{nd}	45	2^{nd}		4^{th}
	capensis									127	
3	Allophylus	30	3^{rd}	30	3^{rd}	40	3^{rd}	40	3^{rd}		2^{nd}
	abyssinicus									140	
4	Polyscias fulva	24	5 th	24	7 th	36	5^{th}	38	4^{th}	122	6 th
5	Albizia	23	6^{th}	28	5^{th}	35	6^{th}	35	6^{th}		7^{th}
	gumiferia									121	
6	Sapium	21	8 th	19	10^{th}	33	7^{th}	33	7^{th}		10^{th}
	ellipticum									106	
7	Millettia	27	4^{th}	30	$3^{\rm rd}$	38	4^{th}	38	4^{th}		$3^{\rm rd}$
	ferruginea									133	
8	Oxyanthus	27	4^{th}	-	-	38	4^{th}	38	4^{th}		11^{th}
	speciosus									103	
9	Vernonia	22	7 th	24	7 th	33	7 th	30	8 th		9 th
	amygdalina									109	
10	Maesa	23	6 th	29	4^{th}	30	8 th	28	9 th		8^{th}
	lanceolata									110	
11	Croton	23	6^{th}	-	-	30	8 th	28	9^{th}		13^{th}
	macrostachyus									81	
12	Ficus ovata	21	8 th	-	-	28	9 th	26	10^{th}	75	14^{th}
13	Schefflera	21	8 th	19	10^{th}	28	9 th	26	10^{th}		12^{th}
	abyssinica									94	
14	Bersama	24	5^{th}	-	-	25	10^{th}	22	11^{th}		16^{th}
	abyssinica									71	
15	Phoenix	-	-	25	6^{th}	25	10^{th}	22	11 th		15^{th}
	reclinata									72	
16	Syzygium	-	-	33	2^{nd}	48	2^{nd}	45	2^{nd}		5^{th}
	guineense									126	
17	Prunus	-	-	29	4^{th}	38	4^{th}	36	5^{th}		11^{th}
	africana									103	

Table 12: Preference ranking for plants suitable for firewood

N	Plant species	Study sit	tes (keb	eles)						District rank	
0	-	yeyebito)	Bita ch	ega	Queja a	araba	Kayake	ela	Gimbo	
		Tot.	rank	Tot.	rank	Tot.	rank	Tot.	rank	Tot.	rank
		score		score		score		score		score	
1	Olea	46	1^{st}	45	1^{st}	48	1^{st}	46	1^{st}		1^{st}
	walwitaahii										
	weiwiischii									185	
2	Chionathus	32	4^{th}	35	2^{nd}	45	2^{nd}	35	3 rd		2^{nd}
	mil dhu a o dii										
	milabraeali									147	
3	Cordia	-	-	33	4^{th}	45	2^{nd}	42	2^{nd}		4^{th}
	africana										
	ajricana									120	
4	Prunus	25	6^{th}	24	7 th	30	5^{th}	28	5^{th}		6^{th}
	africana										
	ајпсана									107	
5	Ehretia	34	2^{nd}	34	$3^{\rm rd}$	35	4^{th}	35	$3^{\rm rd}$		$3^{\rm rd}$
	an a										
	cymosa									138	
6	Galiniera	24	7 th	25	6^{th}	25	7 th	24	6^{th}		7^{th}
	sarifraga										
	saxijraga									98	
7	Vangueria	28	5^{th}	30	5 th	28	6^{th}	30	4^{th}		5^{th}
	anioualata										
	αριειαιαία									116	
8	Vepris	20	8^{th}	22	8^{th}	20	8^{th}	28	5^{th}		8 th
	dainalli										
	ишпет									90	

Table 13: Preference ranking for plants suitable for farm impliments

Figure 8 While carrying out an informal discussion with two of the key informants in "Queja Araba" Kebele

5.4. Status of NTFPs over the past 5-10 years

According to most of the key informants judgment, most of the NTFPs have reduced in abundance over the past 5-10 years. Only

Phoenix reclinata and medicinal plants have increased in abundance.

No	NTFPs	Ye	yebit	0		Bit	a che	ga		Qu	eja a	raba		Ka	yake	la		For	est			
																		PFI	M/status	Fre	e/status	
				1	1		1		1		1	I			1							~
		А	B	С	D	А	В	С	D	А	В	С	D	А	В	С	D		score		score	Gimbo
				_			_	_				_					-	_		~		~
1	House construction wood	0	7	3	0	0	5	5	0	0	2	8	0	0	0	10	0	В	12/20	С	18/20	С
2	Honey(source)	0	0	10	0	0	0	10	0	0	0	2	8	0	0	0	10	С	20/20	D	18/20	С
3	Wood for farm impliments	0	5	5	0	0	4	6	0	0	0	6	4	0	0	9	1	С	11/20	С	15/20	С
4	Beehive material	0	3	7	0	0	0	10	0	0	4	6	0	0	0	10	0	С	17/20	С	16/20	С
5	Firewood	0	5	5	0	0	7	3	0	0	5	5	0	0	4	6	0	В	12/20	С	11/20	С
6	Lianas	0	0	10	0	0	1	9	0	0	0	7	3	0	0	5	5	С	19/20	С	12/20	С
7	Coffee	0	0	10	0	0	0	10	0	0	3	7	0	0	5	5	0	С	20/20	С	12/20	С
8	Medicinal plants	8	2	0	0	7	0	3	0	5	0	5	0	5	7	0	0	A	15/20	B	7/20	A
9	Rhamnus prinioides	0	10	0	0	2	8	0	0	0	7	3	0	0	5	5	0	B	18/20	B	12/20	В
10	Phoenix reclinata	7	3	0	0	5	4	1	0	5	3	2	0	4	4	2	0	A	12/20	A	9/20	A
11	Cardamom	0	0	10	0	0	2	8	0	0	3	7	0	0	5	5	0	С	18/20	С	12/20	С
12	Fagaropsis angolensis	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	D	20/20	D	20/20	D
13	Edible plants & fruits	0	10	0	0	0	10	0	0	0	8	2	0	0	1	9	0	B	20/20	С	11/20	С
14	Mushrooms/Bracket fungi	0	0	10	0	0	0	10	0	0	0	9	1	0	1	9	0	С	20/20	С	18/20	С
15	Edible wild animals	0	0	0	10	0	0	5	5	0	0	9	1	0	3	7	0	D	15/20	С	18/20	С
16	Charcoal	0	10	0	0	0	10	0	0	0	5	5	0	0	4	6	0	B	20/20	С	11/20	В
17	Wild pepper	0	5	5	0	0	4	6	0	0	0	10	0	0	0	10	0	С	11/20	С	20/20	С
18	Cattle forage	7	3	0	0	6	2	2	0	0	5	5	0	0	4	6	0	A	13/20	С	11/20	С
19	Catha edulis	0	0	10	0	0	0	10	0	0	0	10	0	0	0	10	0	С	20/20	С	20/20	С

Table 14: NTFPs status in Gimbo District where; A=increased, B=Remained same, C=Reduced, D=highly reduced

5.5. Result of Market Survey

There were three types of NTFPs vendors identified by the market survey. And these are ambulatory, temporary and permanent vendors. The ambulatory vendors sell firewood, charcoal, *Rhamnus prinoides* and sometimes rope and carpets. The temporary vendors sell coffee, *Fagaropsis angolensis* fruit, carpets and rope. And the permanent vendors sell honey, honey wax, cardamom, wild pepper, coffee and tazma mar.

The temporary vendors living in the two kebeles of the study site (Queja araba and Keya kella) take their products to the market twice to Bonga and once to Uffa. And the other temporary vendors living in the other two kebeles of the study site (Yeyebito and Bitachega) take their products to the nearby markets of Wushwush and Woshi once a week.

Among the ambulatory vendors contacted for interview, 25% of them came from the two kebeles, Qeja araba and Keyakela (which are among the four kebeles of the study site). And none of them lived in Bonga town. And among the temporary vendors only 5% came from Queja araba and Keya kela. And 15% of the temporary vendors lived in Bonga town (showing the presence of retail). And all the permanent vendors are residents of Bonga town.

Figure 9: Carpets and containers made of *Phoenix reclinata* leaves for sell at Bonga market Table 15: current price of NTFPs with in the Bonga town

No.	Type of product		Unit	Bonga open market	Bonga shops	Bonga from ambulatory merchants
1	Coffee	Unpeeled/Dry berrey	1kg	4.5 birr	-	-
		Peeled/beans	1kg	15 birr	16 birr	-
2	Н	oney	1kg	-	16 birr	-
3	Be	eswax	1kg	-	24 birr	-
4	Kor	rorima	1kg	-	15 birr	-
5	Wild	l pepper	1kg	-	9 birr	-
		Low quality	1m*2m	3 birr	-	3 birr
		Good quality	1m*2m	10 birr	-	-
6	Carpet(made of <i>Phoenix</i> <i>reclinata</i>)	Good quality and decorated with colours	1m*2m	15 birr		-
7	Fagaropsis o	angolensis fruit	Local coffee cupful	0.25 birr	-	-
8	Rhamnu	s prinoides	Woman load	-	-	5 birr
9	Fire	ewood	Woman load	-	-	7-10 birr
10	cha	arcoal	50kg sack	-	-	
11	Rope	made of <i>Phoenix reclinata</i>)	6 m	1 birr	-	1 birr
		made of <i>Hibiscus</i> berberidifolius	6 m	1.5 birr	-	1.5 birr
		Made of Dombeya torrida	30 m	40 birr	-	40 birr

NB: * stands for multiplication sign (showing dimention i.e. length * width).

5.6. Availability of NTFPs

In the study area (Table 16), the months of September, October, November and December are the most important months for the harvest of coffee and cardamom. In April of the year, honey is harvested. Several other NTFPs like *Phoenix reclinata, Rhamnus prinoides, Cyathea manniana, Piper capense*, medicinal plants, wild foods, mushrooms and firewood are harvested during the whole year. The major crops that are grown in the study area are harvested during the months of September, October and November.

NTFPs				Month	s of col	lection/	months	of avai	lability			
	J	F	М	А	М	J	J	А	S	0	N	D
Coffee												
Honey												
Honey wax												
Cardamom												
Fagaropsis					(One	ce in 6-	7 years)) rare				
angolensis fruit												
Rhamnus												
prinoides												
mushrooms					(Every	3 mont	hs) not	specific				
Wild fruits												
Wild pepper												
Medicinal												
plants												
Firewood												
Phoenix												
reclinata												
Cyathea												
manniana												
Maize												
Barley												
Teff												

Table 16: NTFPs availability in the months of the year versus availability of major crops

5.7. Threats to the biodiversity and NTFPs of the Gimbo District

During this study, as it has been witnessed by other concerned individuals, it was learnt that large amount of natural forest has been converted to a private coffee investment holdings. This trend is also continuing and the researcher came across large areas demarketed as an investment land. And according to the researcher's observation and informal discussion carried out with the local people, the investors are involved in massive production of coffee and honey by clearing the forest and destroying the biodiversity. This is one treat to the biodiversity of the area.

Another treat is the resettlement of people whereby the government follows as a policy and the other one is a volunteer resettlement whereby farmers from another corner of the country do by their own. In both cases the pressure has been exerted on the biodiversity of the natural forest. Although there needs to be further study, it was believed that the resettlement programme carried out by the government was less damaging than that by the volunteer resettlers. This could be due to the inherent different nature of the people that are resettled by the government and that of the volunteer resettlers.

Household tools like plates, vessels, horn, drum, barrel, axe handle, grinders (mukecha & zenezena), cart, beehive are made in a very distructive manner. However, since the quality of these items is poor, there is no market for sell to other markets therefore, these products exept the beehives, are produced once per household which make the threat less despite the massive chunk of stem that is needed in making them.

During the study, it was observed that farmers deliberately kill trees so that they can be allowed to cut it and use it. It was learned that in the PFM scheme for most of the tree species, it is when the trees die and get old that farmers are allowed to cut them for use. So in the PFM sites and especially in the Bitacheka Kebele, there were quite many trees that were made to die deliberately.

5.8. Result of the vegetation Data

5.8.1. Floristics

A total of 130 plant species belonging to 57 families were delt by this study. Out of the 130 plant species encountered, 105 of the plant species were found within the sample plots and the rest 25 of the plant species were not found within the sample plots. The families Rubiaceae, Acanthaceae, Asteraceae and Euphorbiaceae comprise about 25.76 % of the plants species documented by this study. And the most abundant family is Rubiaceae represented by 12 species (9.23%) of the plants species (Table 17).

No	Scientific names	Habit	Family	In	Out
1	Acanthus eminens	Sh.	Acanthaceae	Х	
2	Achyranthes aspera	Н	Amaranthaceae	Х	
3	Aframomum	Н	Zingiberaceae	Х	
	zambesiacum				
4	Aframonum	Н	Zingiberaceae	Х	
	corrorima				
5	Ajuga alba	Н	Lamiaceae	Х	
6	Albizia	Т	Mimosaceae	Х	
	grandibacteata				
7	Albizia gummifera	Т	Fabaceae	Х	
8	Allophylus	Т	Sapindaceae	Х	
	abyssinicus				
9	Amorphophallus	Н	Araceae	Х	
	gallaensis				
10	Antheum foeniculum	Н	Apiaceae		Х
11	Apodytes dimidiata	Т	Icacinaceae	Х	
12	Arundinaria alpina	Т	Poaceae		Х
13	Asparagus	Н	Asparagaceae	Х	
	asparagoides				
14	Bersama abyssinica	Т	Melianthaceae	Х	
15	Bidens prestinaria	Н	Asteraceae	Х	
16	Brucea	Sh.	Simaroubaceae	Х	
	antidysenterica				
17	Canthium	Т	Rubiaceae	Х	
	oligocarpum				
18	Catha edulis	Sh	Celastraceae	Х	
19	Celtis africana Brum	Т	Ulmaceae	Х	
20	Chionathes	Т	Oleaceae	Х	
	mildbraedii				

Table 17: List of plant sopecies in the study area

21	Cissus	Cl.	Vitaceae	X	
22	quaariangularis	Sh	Dutagaga	v	
22	Clausena anisata	Sn.	Rutaceae		
23	Clematis nirusta	CI.	Ranunculaceae	X	
24	Clematis longicauda	CI.	Ranunculaceae	X	
25	Coffea arabica	Sh.	Rubiaceae	X	37
26	Colocasia esculenta	H	Araceae		Х
27	Comelina difusa	Н	Commelinaceae	Х	
28	Comperatum	Cl.	Combrataceae	Х	
	paniculatum				
29	Crdia Africana	Т	Boraginaceae	Х	
30	Croton macrostacyus	Т	Euphorbiaceae	Х	
31	Cyathea manniana	Т	Cyatheaceae	X	
32	Cyperus	Н	Cyperaceae		Х
	dichroostachyus				
33	Cyprus rigdifolius	Н	Cyperaceae	Х	
34	Dalbergia lactea	Sh.	Fabaceae	Х	
35	Dichrocephala	Н	Asteraceae	Х	
	integrifolia				
36	Dinbollia	Т	Sapindaceae	Х	
	kilimandscharica		1		
37	Dodonea angustifolia	sh	Sapindaceae		Х
38	Dombeya torrida	Т	Sterculaceae	Х	
39	Dracaena	Т	Dracaenaceae	X	
	afromontana				
40	Dracaena fragrans	Sh.	Dracaenaceae	Х	
41	Dracaena steudneri	Т	Dracaenaceae	X	
42	Ehretia cymosa	Т	Boraginaceae	X	
43	Ekebergia capensis	Т	Meliaceae	X	
44	Elaeodendron	Т	Celatraceae	X	
	buchananni				
45	Embelia schimperi	Cl.	Myrsinaceae	X	
46	Ervthrococca	Sh.	Euphorbiaceae	X	
_	trichogyne		· I		
47	Euphorbia	Т	Euphorbiaceae	X	
-	ampliphylla		· I		
48	Fagaropsis	Т	Rutaceae	Х	
	angolensis				
49	Ficus ovata	Т	Moraceae	Х	
50	Ficus sur	Т	Moraceae	Х	
51	Ficus thonningii	Т	Moraceae	Х	
52	Galiniera saxifrea	Т	Rubiaceae	X	
53	Gouania longispicata	Cl.	Rhamnaceae	X	
54	Gutembergia ruenelli	H	Asteraceae		X
<i>.</i>					

55	Hibiscus	Sh.	Acanthaceae	Х	
	berberidifolius				
56	Hippocratea goetzei	Cl.	Celastraceae	Х	
57	Hypoestes forskaolii	Η	Acanthaceae	Х	
58	Ilex mitis	Т	Aquifoliaceae	Х	
59	Impatiens ethiopica	Η	Balsaminaceae		Х
60	Impatiens	Η	Balsaminaceae	Х	
	hochstetteri				
61	Isoglosa somalensis	Η	Balsaminaceae	Х	
62	Isoglossa punctata	Η	Acanthaceae		Х
63	Jasminum	Η	Acanthaceae	Х	
	abyssinicum				
64	Justica shimperiana	Cl.	Oleaceae	Х	
65	Landolphia	Sh.	Acanthaceae	Х	
	buchananii				
66	Lannea fruticosa	Cl.	Apocyanaceae	Х	
67	Lannea shimperi	Т	Anacardiaceae		Х
68	Lantana camara	Η	Anacardiaceae		Х
69	Leonotis nepitifolia	Η	Verbenaceae		Х
70	Lepidotrichilia	Η	Zingiberaceae	Х	
	volkensii				
71	Macaranga capensis	Т	Meliaceae	Х	
72	Maesa lanceolata	Т	Euphorbiaceae	Х	
73	Margaritaria	Т	Myrsinaceae	Х	
	discoidea				
74	Millettia ferruginea		Euphorbiaceae	Х	
75	Myrsine africana	Т	Fabaceae	Х	
76	Mythenus gracilipus	Sh.	Myrsinaceae	Х	
77	Nelsonia canescens	Sh.	Celastraceae	Х	
78	Nelsonia Thomsonii		Acanthaceae		Х
79	Nicotiana tabacum	Н	Ranunculaceae		Х
80	Ocimum lamiifolium	Sh	Solanaceae		Х
81	Ocotea kenyensis	Η	Lamiaceae	Х	
82	Olea welwitschii	Т	Lauraceae	Х	
83	Olyra latifolia	Т	Oleaceae	Х	
84	Oncoba spinosa	Η	Poaceae	Х	
85	Oplismenus hirtellus	Т	Flacourtiaceae	Χ	
86	Oxyanthus speciosus	Н	Poaceae	X	
87	Paullinia pinnata	Т	Rubiaceae	Х	
88	Pavetta abysinica	Cl.	Sapindaceae	X	
89	Pentas cafensis	Т	Rubiaceae	Χ	
90	Pentas lenceolata	Н	Rubiaceae		X
91	Persicaria	Н	Rubiaceae	X	
	senegalensis				
92	Phaulopsis imbricata	Н	Polygonaceae		X

93	Phoenix reclinata	Н	Acanthaceae	Х	
94	Piper capense	Т	Palmaceae	Х	
95	Pittosporum	Н	Piperaceae	Х	
	virdiflorum				
96	Podocarpus falcatus	Т	Pittosporaceae	Х	
97	Polyscias fulva	Т	Podocarpaceae	Х	
98	Pouteria adolfi-	Т	Apocynaceae	Х	
	friedericii				
99	Protea gaguedi	Т	Sapotaceae	Х	
100	Prunus Africana	Т	Proteaceae		Х
101	Psychotria orophila	Т	Rosaceae	Х	
102	Ranunculus	Sh.	Rubiaceae	Х	
	multifidus				
103	Rhamnus prinoides	Н	Ranunculaceae	Х	
104	Rothmannia	Sh	Rhamnaceae	Х	
	urcelliformis				
105	Rubus studneri	Sh.	Rubiaceae	Х	
106	Rungia grandis	Sh.	Rosaceae	Х	
107	Rvtigvnia neglecta	Sh.	Acanthaceae	Х	
108	Sapium ellipticum	Т	Rubiaceae	Х	
109	Satruia paradoxa	Т	Euphorbiaceae	Х	
110	Schefflera abyssinica	Н	Lamiaceae	X	
111	Senna	Т	Araliaceae	X	
	septemtrionalis	_			
112	Sida rhombifolia	Н	Fabaceae/		X
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Cesalpinoidae		
113	Sida tenuicarpa	Н	Malvaceae	X	
114	Solanecio gigas	Sh/H	Malvaceae		X
115	Solanecio mannii	T/Sh/H	Asteraceae		X
	~				
116	Stephania abyssinica	Н	Asteraceae		X
117	Svzygium guineense	Cl.	Meinispermaceae	Х	
118	Teclea nobilis	Т	Myrtaceae	Х	
119	Thalictrum	Т	Rutaceae	Х	
	schimperiannum				
120	Thelvpteris confluens	Н	Ranunculaceae	Х	
121	Tliacora troupinii	Н	Aspleniaceae	Х	
122	Trema orientalis	Cl.	Meinispermaceae	Х	
123	Triumfetta	Т	Ulmaceae	Х	
	brachyceras			_	
124	Urera	Н	Rubiaceae		X
	hypselodendron				
125	Utrica simensis	Н	Urticaceae		X
126	Vangueria apiculata	Н	Urticaceae		X



127	Vepris dainellii	Т	Rubiaceae	Х	
128	Verbena officinalis	Т	Rutaceae	Х	
129	Vernonia amygdalina	Н	Verbenaceae		Х
130	Vernonia	Т	Asteraceae	Х	
	auriculifera				

#### 5.8.2. Stem density

A total density of stem (trees and shrubs) in the PFM forest was 9933 stems/ha while in the free access forest it was 7596 stems/ha. The density of trees in the PFM forest was 973 stems/ha and in the free access it was 1156 stems/ha, while the density of shrubs in the PFM forest is 8960 stems/ha and in the free access it was 6440 stems/ha (Fig. 8).

Student t-test showed that total density of stems in the PFM forest was not significantly different from that of the total density of stems in the free access forest (2-tailed P value of 0.181, t =1.372 with 29 d.f, 95% CI). The test also showed that neither the tree density nor the shrub density inside the PFM forest and free access forest patches have significant difference (2-tailed P value of 0.058, t = -1.972 with 29 d.f, 95% CI for the trees) and (2-tailed P value of 0.154, t = 1.465 with 29 d.f, 95% CI for the shrubs).





Figure 10: Tree and shrub density in the study area

## 5.8.3. Abundance, basal area, frequency and importance value index (IVI)

The importance value index showed that; in the PFM forest 31 of the individuals have IVI between 0-5, ten individuals have IVI between 5-10, six individuals have IVI between 10-15, three individuals have IVI between 15-20, and one individual has IVI >30. There are no individuals that have IVI between 20-25 and 25-30. Again in the Free access forest, twenty five of the individuals have IVI between 0-5, eighteen individuals have IVI between 5-10, three individuals have IVI between 10-15 and another 3 individuals have IVI between 15-20. There are no individuals that have IVI between 20-25 and >30 but there is one individual that has IVI between 25-35.

The five most important tree species in the PFM forest are; *Olea welwitschii, Podocarpus falcatus, Schefflera abyssinica, Elaeodendron buchananii* and *Chionanthus mildbraedii* while in the free access forest *Olea welwitschii, Vepris dainelli, Chionanthus mildbraedii*,



*Schefflera abyssinica* and *Elaeodendron buchanannii* are the five most important tree species. And to the contrary the five least important tree species in the PFM forest are; *Cordial africana, Ficus thonningii, Dombeya torrida, Ekebergia capensis* and *Vernonia auriculifera* while in the free access forest *Fagaropsis angolensis, Vernonia auriculifera, Ekbergia capensis, Pittosporum virdiflorum* and *Bersama abyssinica*. The total density/ hectare of all the woody pant species was 973 and 1156 in the PFM and the free access forest patches respectively. And the total basal area of all the woody plant species in the PFM forest was 48,4653m²/ha while it was 384297.805m²/ha in the free access forest.

Table 18: IVI result in both the PFM and free access fores
------------------------------------------------------------

	Frq.	Rl. Frq.	D/ha	Rl. D/ha.		RI	
Trees	_	_			BA/ha	BA/ha	IVI
Olea welwitschii	22	4.84581	29	2.98047276	136916.6	28.2504	36.0766828
Podocarpus							
falcatus	1	0.22026	1	0.10277492	94556.25	19.5101	19.8331349
Schefflera							
abyssinica	7	1.54185	15	1.54162384	72698.1	15	18.0834738
Elaeodendron							
buchanannii	19	4.18502	114	11.716341	8533.852	1.76082	17.662181
Chionathes							
mildbraedii	26	5.72687	85	8.73586845	1200.585	0.24772	14.7104584
Verpis dainelli	26	5.72687	80	8.22199383	3238.625	0.66824	14.6171038
Syzygium							
guineense	18	3.96476	47	4.83042138	25468.15	5.25492	14.0501014
Milletttia							
ferruginea	23	5.06608	44	4.52209661	11240.9	2.31937	11.9075466
Phoenix reclinata	16	3.52423	63	6.47482014	3147.47	0.64943	10.6484801
Galiniera							
saxifarga	19	4.18502	57	5.85817061	437.2715	0.09022	10.1334106
Dracaena							
steudneri	12	2.64317	16	1.64439877	23910.75	4.93358	9.22114877
Albizia							
grandibacteata	19	4.18502	43	4.41932169	2692.049	0.55546	9.15980169
Bersama							
abyssinica	24	5.28634	29	2.98047276	458.1564	0.09453	8.36134276
Ficus vasta	14	3.0837	49	5.03597122	7.696391	0.00159	8.12126122
Dracaena							
afromontana	12	2.64317	43	4.41932169	2355.39	0.486	7.54849169
Polyscias fulva	14	3.0837	8	0.82219938	15533.88	3.20516	7.11105938
Oxyanthus							
speciosus	18	3.96476	29	2.98047276	109.1911	0.02253	6.96776276
Ficus sur	9	1.98238	6	0.61664954	21017	4.3365	6.93552954
Croton							
macrostachyus	7	1.54185	8	0.82219938	20936.07	4.31981	6.68385938
Macaranga	11	2.42291	14	1.43884892	6413.541	1.32333	5.18508892

A) Inside the PFM forest



capensis							
Rytigynia							
neglecta	12	2.64317	20	2.05549846	536.6684	0.11073	4.80939846
Albizia gummifera	5	1.10132	28	2.87769784	2454.176	0.50638	4.48539784
Allophylus							
abyssinicus	13	2.86344	10	1.02774923	634.849	0.13099	4.02217923
Cyathea							
maninana	1	0.22026	35	3.5971223	50	0.01032	3.8277023
Prunus africana	5	1.10132	8	0.82219938	9103.621	1.87838	3.80189938
Canthium							
oligocarpum	10	2.20264	12	1.23329908	1357.13	0.28002	3.71595908
Dinbollia							
kiligmandscharica	11	2.42291	9	0.92497431	184.1826	0.038	3.38588431
Eupohrbia	-	1 10100	0	0.000100000		0.55500	
ampliphylla	5	1.10132	8	0.82219938	3670.205	0.75729	2.68080938
Pouteria adolfi-	7	1 5 4 1 9 5	2	0 20022 477	2252 508	0.46400	2 21516477
friedericii	/	1.54185	3	0.30832477	2253.598	0.46499	2.31516477
Pittosporum	6	1 22150	C	0 61664054	160 6906	0.02215	1 07129054
viriaiflorum Maasa lausa selata	6	1.32159	6	0.61664954	1047.564	0.03315	1.9/138954
Maesa lanceolata	5	1.10132	0	0.61664954	1047.564	0.21615	1.93411954
Ocotea kenyensis	6	1.32159	4	0.41109969	923.7438	0.1906	1.92328969
Enretia cymosa	2	1.10132	0	0.01004954	891.4544	0.18394	1.90190954
Thex mittis	3	0.66079	3	0.30832477	4547.063	0.93821	1.90/324//
Fagaropsis	5	1 10122	5	0 51297461	1100 212	0 22702	1 94000461
Angolensis	3	1.10152		0.3138/401	1100.515	0.22703	1.84222401
dimidiata	5	1 10132	3	0 30832477	683 0326	0 14003	1 55057477
Sanjum allinticum	3	0.66070	2	0.30832477	2506.868	0.14093	1.33037477
Psychotria	5	0.00079	<u>_</u>	0.20334983	2590.808	0.55582	1.40213983
oronhila	4	0.88106	5	0 51387461	25	0.00516	1 40009461
Trema orientalis	4	0.88106	2	0.20554985	712 4617	0.147	1 23360985
Celtic africana	4	0.88106	2	0.20554985	95 01062	0.0196	1 10620985
Oncoba spinosa	3	0.66079	2	0.20554985	96 75041	0.01996	0.88629985
Vangueria apiculata		0.00077		0.2000 1900	20112011	0.01770	0.0002//02
,	3	0.66079	2	0.20554985	50	0.01032	0.87665985
Teclea nobilis	2	0.44053	2	0.20554985	187.5442	0.0387	0.68477985
Vernonia							
amygdalina	2	0.44053	2	0.20554985	51.30927	0.01059	0.65666985
Pavetta							
abyssinica	2	0.44053	2	0.20554985	4.607514	0.00095	0.64702985
Sapium ellipticum	1	0.22026	1	0.10277492	124.5872	0.02571	0.34874492
Cordia africana	1	0.22026	1	0.10277492	111.8483	0.02308	0.34611492
Ficus thonningii	1	0.22026	1	0.10277492	101.6454	0.02097	0.34400492
Dombeya torrida	1	0.22026	1	0.10277492	19.93395	0.00411	0.32714492
Ekebergia							
capensis	1	0.22026	1	0.10277492	5.779665	0.00119	0.32422492
Vernonia							
auriculifera	1	0.22026	1	0.10277492	0	0	0.32303492
Sum	454	100	973	100	484653	100	300

B) In the free access forest

Trees	Frq.	Rl. Frq.	D/ha	Rl. D/ha.	BA/ha	Rl BA/ha	IVI
Olea welwitschii	24	4.5801527	68	5.8823529	64178.5	16.7001997	27.16271
Vepris dainellii	21	4.0076336	150	12.975779	8522.745	2.21774494	19.20116



Chionathes							
mildbraedii	19	3.6259542	129	11.15917	9450.645	2.45919831	17.24432
Schffeleia							
abyssinica	13	2.480916	16	1.384083	46133.645	12.0046602	15.86966
Elaeodendron							
buchananii	12	2.2900763	49	4.2387543	26232.545	6.82609815	13,35493
Milletttia ferruginea	23	4.389313	55	4.7577855	11491 445	2 9902448	12 13734
Svzvojum guineense	11	2,0992366	47	4 0657439	15515 545	4 03737544	10 20236
Croton		2.0772300	.,	110007107	10010.010	1.00707071	10.20200
macrostachvus	8	1 5267176	33	2 8546713	16738 045	4 35548811	8 736877
Dracaena steudneri	15	2.8625954	10	0.8650519	16752 495	4 35924822	8 086896
Phoenix reclinata	18	3 4351145	40	3 4602076	4124 045	1 07313781	7 96846
Ficus sur	15	2.8625954	48	4 1522491	2628 895	0.68407756	7 698922
Polyscias fulva	10	1 9083969	53	4 5847751	3165 245	0.8236438	7 316816
Teclia nobilis	17	3 2442748		3 5/67128	1586 795	0.0200400	7 203895
Funhorbia		5.2442740	71	5.5407120	1000.100	0.41200700	7.200000
amplinhvlla	8	1 5267176	16	1 384083	15781 795	4 10665765	7 017458
Podocarnus falcatus	11	2 0992366	6	0.5190311	16202 545	4 21614305	6 834411
Allonhylus		2.0772300	0	0.5170511	10202.040	4.21014000	0.004411
abyssinicus	18	3 4351145	36	3 1141869	808 195	0 21030435	6 759606
Orvanthus	10	5.4551145	50	5.1141007	000.100	0.21000400	0.700000
speciosus	14	2 6717557	6	0 5190311	13649 995	3 5510316	6 742718
Dinhollia	14	2.0717557	0	0.5170511	10040.000	0.0010010	0.742710
kilimandscharia	20	3 8167939	26	2 2491349	1931 045	0 50248661	6 568415
Rytigynia neglecta	20	3 8167939	26	2.2491349	1/38 0/5	0.37/20068	6 //013
Pouteria adolfi-	20	5.0107757	20	2.2471347	1430.043	0.37420000	0.44013
friedericii	19	3 6259542	25	2 1626298	1914 045	0 49806296	6 286647
Albizia aummifara	8	1 5267176	5	0.432526	16557 845	4 3085974	6 267841
Macaranga	0	1.5207170		0.432320	10007.040	4.0000074	0.207041
canansis	8	1 5267176	5	0.432526	16528 0/5	1 30107710	6 260321
Dracaena	0	1.5207170	5	0.432320	10020.040	4.00107710	0.200321
afromontana	16	3 053/351	28	2 1221153	1002 005	0 /0518750	5 970768
Prunus africana	13	2 / 80916	16	1 38/083	7021.845	2 06138182	5.026381
I enidotrichilia	10	2.400710	10	1.504005	7521.045	2.00100102	0.020001
volkensii	18	3 4351145	23	1 9896194	1344 545	0 3498706	5 774604
Cyathea manniana	10 Q	1 7175573	25	2 1626298	3285 005	0.5430700	1 735018
Margaritaria	3	1.7175575	25	2.1020270	5205.035	0.00400000	4.733010
discoidea	6	1 1/150382	5	0.432526	10980 995	2 85741813	4 434982
Sanjum ellinticum	13	2 / 80916	14	1 2110727	2299.095	0.59825869	4 290247
Canthium	10	2.400710	14	1.2110/27	2200.000	0.00020000	4.230247
olivocarnum	13	2 480916	13	1 1245675	2626 345	0 68341401	4 288898
Ficua vasta	10	1 9083969	9	0.7785467	5178 895	1 34762546	4.034569
Maesa lanceolata	7	1.3358779	13	1 1245675	5743 295	1 49449073	3 954936
Fhretia abyssinica	/ 	0.7633588	34	2 9411765	570 195	0 14837321	3 852908
Vernonia	4	0.7055588	54	2.9411705	570.195	0.14037321	3.032300
amvadalina	Q	1 5267176	7	0.6055363	5352 205	1 3027/672	3 525001
Figure thorningii	0	1.5267176	12	1.0380672	1075 2/5	0.51302014	3 079769
I los monungu Ilos mitis	0	1.5267176	12	0.6055262	3326 7/5	0.0100011	2 007022
Galinoria sarifraça	0	1.320/1/0	7	0.0033303	1962 005	0.0000000	2.331322
Oanneria saxijraga	7	1.3330/19	1	0.0033303	1003.093	0.40001019	2.420421
Albinia	/	1.5558/79	0	0.3190311	2100.345	0.00900173	2.414401
AIDIZIU	л	0 7622500	2	0.2505156	1950 205	1 26446070	2 207225
Gondia africana	4	0.7033388	<u>כ</u>	0.2393130	4009.290	1.20440079	2.201333
Coraia africana	5	0.9341985	1	0.0055363	1097.295	0.44100139	2.001396
Oncoba spinosa	6	1.1450382	6	0.5190311	542.145	0.14107419	1.805143



Trema orientalis	5	0.9541985	5	0.432526	864.295	0.22490241	1.611627
Psychotria orophyla	4	0.7633588	3	0.2595156	2138.445	0.55645518	1.57933
Pavetta abysinica	5	0.9541985	4	0.3460208	756.345	0.19681221	1.497031
Celtis sp.	4	0.7633588	5	0.432526	1155.845	0.30076805	1.496653
Apodytes dimidiata	4	0.7633588	3	0.2595156	728.295	0.18951318	1.212388
Fagaropsis							
angolensis	2	0.3816794	5	0.432526	1330.095	0.34611049	1.160316
Vernonia							
auriculifera	2	0.3816794	2	0.1730104	888.095	0.23109552	0.785785
Ekebergia capensis	2	0.3816794	2	0.1730104	515.795	0.13421753	0.688907
Pittosporum							
viridiflorum	1	0.1908397	1	0.0865052	492.845	0.12824559	0.40559
Bersama abyssinica	1	0.1908397	1	0.0865052	474.145	0.12337958	0.400724
Sum	524	100	1156	100	384297.805	100	300



Figure 11: IVI distribution

#### 5.8.4. Forest structure

The forest structure in both the PFM and the free access forests showed an inverted "J" shape for both the tree height distribution and tree diameter distribution. In both forest patches small-sized individuals are present in large amount. Individuals with height measuring less than 10 m comprise 88.3% and 89% of the total individuals in the PFM forest and free access forests respectively. Furthermore, individuals with height less than 5 m comprise 78% of the total individuals in the PFM forest while in the free access forest it was 85% of the individuals that are less than 5 m in height.

Again the diameter distribution showed that small-sized individuals comprise the major proportion of the forest in the study area. Similarly in the PFM forest, individuals with



DBH less than 25 cm comprise 85.3% of the total individuals and in the free access 88%. And individuals with smaller diameter size, less than 5 cm, comprise 78% of the total individuals in the PFM forest while it was 85% in the free access forest.



Figure 13: Tree diameter distribution



#### **5.8.5.** Selected trees population structure

The population structure of the selected 9 tree species revealed the following general patterns: 1) abnormal or irregularly interrupted shape, 2) Gaussian curve, 3) "J" shape, 4) inverted "J" and 5) "U" shape

The species that depicted an abnormal population structure are; *Olea welwitschii* (free access), *Phoenix reclinata* (PFM), *Ehretia cymosa* (PFM) and *Millettia ferruginea* (PFM and Free access). And those species with a gaussian curve population structure are; *Syzygium guineense* (PFM) but lack representation at diameter class 1, *Olea welwitschii* (PFM) with disturbance at diameter class 1 and 3. "U" shape was depicted by the population structure of *Syzygium guineense* in the free access forest.

*Schefflera abyssinica* (PFM and free access) and *Fagaropsis angolensis* (free access) depicted a population structure that is "J" shaped. But *Schefflera abyssinica* (PFM) lacks representation at diameter calss 1, 2 and 3 while *Schefflera abyssinica* (free access) lacked representation at diameter classes 2 and 3. Similarly *Fagaropsis angolensis* (free access) also lacked representation at diameter classes 2, 3 and 4. The rest species depicted a population structure that resembles an inverted "J" shape. These spesies are; *Elaeodendron buchananii* (PFM) with disturbance at diameter class 1 and lacking representation at diameter class 6, *Elaeodendron buchananii* (free access) lacking representation at diameter class 6, *Phoenix reclinata* (free access) lacking representation at diameter class 4,5 and 6, *Fagaropsis angolensis* (PFM) lacking representation at diameter class 3, 4 and 5 while *Fagaropsis angolensis* (arganopsis angolensis) lacked representation at diameter class 4,5 and 6 is the fagaropsis angolensis (free access) lacking representation at diameter class 4,5 and 6, *Euphorbia ampliphylla* (PFM and free access) / *Fagaropsis angolensis* (PFM) lacking representation at diameter class 3, 4 and 5 while *Fagaropsis angolensis* (free access) lacked representation at diameter class 4.









Figure 14: Population structure of the most important tree species



#### 5.8.6. Biodiversity pattern

The over all diversity (H) in both the PFM forest and the free access forest was found to be very high depicting 4.37 for the PFM forest and 4.27 for the free access forest. Although there is not much diversity difference in both forest patches of the study area, individual plots show clear difference in diversity pattern indicating the plots in the PFM forest are high in diversity (Fig. 13). Plots 1-30 are those plots in the PFM forest while 31-60 are in the free access forest whose "H" value is sorted asendingly.



Figure 15: Plots diversity pattern

The evenness computed, for the total number of species recorded 105 in the free access and 104 in the PFM forest, in the two forest patches revealed that in the PFM forest E = 0.94 and in the free access E = 0.91.



# 6. DISCUSSION

#### 6.1. NTFPs Resource Base of Gimbo District

By this study, a total of 26 NTFPs or NTFP categories were identified to be found in Gimbo District. This result parallels another report by Beijinene *et al.* (2004). According to Beijinene *et al.* (2004), 11 types of NTFPs were reported to be present in the forests of Kafa and Shaka.

The 45 medicinal plant species reported by this study, were also reported by others studies to have medicinal uses (eg. Ermias Lulekal et al., 2008).

Out of the 26 NTFPs or NTFP categories identified by this study, the mushrooms are the less talked of and less recognized ones. But if these mushrooms and bracket fungus are domesticated, they can be good source of income and food for the local people of the study area. According to Dawit Abate (1998), identification of edible mushrooms is the first step in the domestication process. Therefore, the documentation of the above edible three mushrooms and one bracket fungus species delt in this study is a vital source of information for the domestication and future development of the mushroom/ bracket fungus sector.

## **6.2. NTFP and Species Preference**

In the study area, among the 19 NTFPs and NTFPs categories evaluated, the five most important NTFPs and NTFPs categories are; house construction wood, honey, coffee, wood for farm impliments and firewood. The least three preferred NTFPs and NTFPs categories are; edible wild animals, wild pepper and muhrooms/bracket fungi.

The unperiodical availability and small abundance of mushrooms and bracket fungi in addition to the fact that mushrooms and bracket fungi are not sold in the markets in good price, made them to be less preferred NTFPs in Gimbo District. Also the rapid decrease in the number of edible wild animals found in the forests and the low selling price of wild pepper may have made the two NTFPs categories to be less preferred by the local people in the Gimbo District.



#### 6.3. Status of NTFPs

In the study area most of the NTFPs are being reduced in abundance over the years (Table 14). The only NTFPs that have increased in abundance, according to the interview result, are medicinal plants. *Rhamnus prinoides* and charcoal have their abundance unchanged over the years. And another NTFP whose abundance decreased highly is the *Fagaropsis angolensis* fruit.

With the fact that the forests in the study area are secondary and are recovering, there may have been an increase in the abundance of herbs and invasive species which may be used as medicine.infact from the 45 major medicinal plants delt in this study, 53.33% were herbs. Therefore, the increased abundance in medicinal plants may be attributed to the fact that the forest is recovering. On the other hand, the unchanged abundance of the *Rhamnus prinoides* and charcoal may be due to the fact that *Rhamnus prinoides* can easily propagate vegetatively and is not sold in the central market but is rather consumed by the house holds and sold to the local markets only. And for the charcoal, the reason for unchanged abundance may be due to the fact that most farmers don't relay on charcoal as source of energy but they rather depend on firewood.

The high reduction of abundance of *Fagaropsis angolensis* is because the species is important for its fruit and bark. Specially the fruit is collected from the forest and is taken to the village making the reproduction of the species imposible. Therefore, it is obvious that the species abundance will reduce much even in the future.

## 6.4. Marketability of NTFPs

The price of the major NTFPs coming to the local markets in the study area have increased since 2003. When the market price surveyed by this study is compared to the price surveyed by Taye Bekele (2003), the price of coffee has increased from 7-8 birr per killo to 15-16 Birr, the price of honey from 8 birr per killo to 16 birr, the price of cardamom from 6-9 birr per killo to 15 birr, the price of wild pepper from 4 -5 birr per killo to 9 Birr, the price of fuel wood from 5-6 birr per women load to 7-10 birr and The



price of charcoal from 14 birr per 50 kg to 20-25 birr (Table15 & Annex 8). This result supports the finding that the status of most NTFPs in the study area has been reducing (Table 14). And it is obvious when status of goods is getting scarce prices will increase. Meanwhile, less supply will result in high price. Other wise the increase in price was not as a result of value addition.

## 6.5. NTFPs Availability

In the Gimbo District, the months of September-December are the most prosperous because the crops growing in the area are harvested during these months (Table 16). These months are prosperous also because cardamom and coffee are harvested during these months. Especially in the 2 kebeles of the study area (Keyakelo and Qeja araba), these months are important because plenty of coffee is harvested. The income generated during these months (September-December) is utilized and for most of the farmers, at around April, another source of income is needed. It is therefore why most farmers especially from the two kebeles (Yeyebito and Bitachega) depend on honey. Which is largely harvested in April.

Nowadays, farmers with good saving from the harvest of coffee and crop of the early months, have started to store honey and sell it when the price for honey rises. This way honey is gaining importance in providing seasonal trade off.

*Phoenix reclinata, Rhamnus prinoides, Cyathea manniana, Piper capense*, medicinal plants, wild foods and fuelwood are important in that, they are harvested all over the year. Mushrooms are also important in that they are harvested in three months time. Therefore, the above NTFPs are good source of income for the poor farmers and women at times of empty pocket or stomach.

## 6.6. Tree and Shrubs Density

<u>The Density of Trees</u>: Density of trees in the PFM forest is lower than the density of trees in the free access forest. This could be due to the fact that the PFM forest is



recovering from past disturbances and the canopy is closing letting less sunlight to reach the floor of the forest hindering the regeneration of trees. On the other hand in the free access forest since the forest is likely to be more disturbed than the PFM forest, more light will reach the forest floor enabling the regeneration of trees whereby more small sized tree individuals number increases. Similar finding was reported by Hitimana *et al.* (2004) whereby among sites in disturbed and undisturbed Moist Lower Montane Forest, western Kenya, the density of the trees was found to be higher in the disturbed site than in the undisturbed. The justification Hitimana *et al.* (2004) forwarded for this difference in density is regeneration diffrence, site quality or both. However, the difference in tree density observed in this study, can be more explained by the level of regeneration than the site quality because the shrubs density result depicted the reverse scenario.

**The Density of Shrubs**: Although the density of trees was high in the free access forest than the PFM forest, the density of shrubs for the two forest sites revealed the reverse. The density of shrubs in the free access forest was much lower than the density of shrubs in the PFM forest. This can probably be explained by the fact that coffee management practices resulted in the clearance of most shrubs that compete with the coffee. This assertion can be valid by the fact that coffee is more important in the free access forest than the PFM forest (result of preference ranking and SUPPAK, 2004) and the high frequency and density of coffee observed on the site. Schmitt *et al.* (2005), reported the existence of small number of mature shrubs in the coffee managed forests of Bonga.

## 6.7. Importance value index

Generally speaking, since the total density/ hectare of all the tree species was 973 and 1156 in the PFM and the free access forest patches respectively and the total basal area of all the tree species in the PFM forest was 48,4653m²/ha while it was 384297.805m²/ha in the free access forest, it it shows that the PFM forest is made up of few but big diameter tree species while the free access forest is made of many but small diameter trees. However, there was not major difference in vegetation composition. Meanwhile, both forest patches have *Olea welwitschii, Elaeodendron buchananni, Chionanthus mildbraedii* and *shefflera abyssinica* among the five most important tree species. Again



these four species were reported as among the most tree species in the forests of Bonga( Abayneh Derero *et al.*,2003).

#### 6.8. Forest Structure

**Tree Height Distribution:** In the study area (the PFM forest and the free access), trees with height less than 10 m comprised 88% and 89% of the total individuals respectively. And showing an inverted "J"-shaped distribution. This is a good indicator for good regeneration and recruitment process of the forest. A similar result was reported in the different afromontane forests of Ethiopia (Tamrat Bekele, 1993; Abayneh Derero *et al.* 2003; Feyera Senbeta, 2006). Feyera Senbeta (2006), in particular, reported afromontane forests in Ethiopia generally have a considerable number of the forest individuals in the lower diameter and height classes.

In the study area, it was learned that, trees of height classes 1, 6 and 7 were proportionally more in number in the free access forest than the PFM forest. This can be due to high regeneration percentage in the free access forest resulting more of the height class 1 individuals. And for height classes 6 and 7 it can be due to the deliberately left tall trees for coffee shade resulting more proportion of individuals in the free access forest. For the rest of tree height classes, the PFM forest has higher number of individuals or both the PFM forest and the free access forest had equal proportion of tree individuals. This can be due to the difference in level of disturbance.

**Diameter Distribution**: In the diameter distribution also, both forest patches depicted an inverted "J" shaped structure. This is a good sign for recruitment process of the forest patch. However, the PFM forest is some how moving to the climax forest stage in that number of individuals in the diameter class 1 are smaller than the number of individuals in the diameter class 2 of the same forest patch. As forests move to the climax they suppress small-sized individuals and ultimately depict some form of Gaussian curve shape. According to Raven and Johnson (1991) also, in succession the earlier successional stages are more productive than the later ones.



In the free access forest however, despite the low number of individuals at the higher diameter class, which could be the result of logging, the diameter distribution depicts good inverted "J" shape structure indicating good recruitment. And also indicating that the forest is disturbed and is secondary.

#### 6.9. Population Structure of the Important Tree Species

Although the totality of forest structure of the forest patches in the study area depicts an inverted "J" shape, individual trees population structure did not match with the structure of the whole forest. Good overall forest regeneration do not necessarily mirror the regeneration status of constituent tree species (Hitimana *et al*, 2004).

<u>Olea welwitschii</u>: Olea welwitschii depicted a Gausina structure with disturbance and an abnormal distribution in the PFM forest and the free access forests respectively. In the PFM forest there are less small individuals showing poor regeneration. And there is also poor recruitment in the PFM forest due to the fact that big individuals are more in proportion than the small individuals. However, it was found that, there is more *Olea welwitschii* logging in the free access forest than the PFM forest. In the free access forest diameter classes 2, 3 and 4 are smaller in number. This may indicate that *Olea welwitschii* is cut without regulation in the free access forest can also be due to the suitability of individuals at diameter classes 2, 3 and 4 for house construction and farm impliment.

<u>Schefflera abyssinica</u>: In both forest patches the population structure of this species shows "J" shape. This indicates that in both forest patches there is poor regeneration and recruitment of *Schefflera abyssinica*. However, the representation of diameter class 1 in the free access forest and the lack of repersentation in the PFM forest indicates that regeneration of this species in the PFM forest is poor due to the canopy closure. The PFM forest and the free access forests seem to have almost equal number of big individuals of *Schefflera abyssinica*. This could be due to the site preference of the species. The lack of representation at diameter classes 2 and 3 indicates that there is very poor recruitment of the species in both forest patches.



<u>Syzygium guineense</u>: Syzygium guineense in the PFM forest depicted a Gaussin structure. This indicates that there is poor regeneration and recruitment. Since there is no individual representation at diameter class 1, it is an indication for poor regeneration. In the free access forest, the species depicted a "U" shape structure which indicates that there is selective logging of the species. Furthermore, the "U" shape depicted indicates that the species is having poor recruitment. Since diameter classes 3 and 4 are perfect sizes for pole and are desired for construction and since Syzygium guineense is highly desired for construction (Table 11), the selective logging can be associated with construction. So it indicates that with no PFM scheme in the free access forest, farmers were able to selectively log the specific pole size individuals while in the PFM forest the pole sized individuals were not being cut.

*Elaeodendron buchananii:* In both the PFM and free access forests the population structure of this species depicted an inverted "J" shpe. This is an indication for good regeneration and recruitment of the species. In both the forests there is no representation at diameter class 6. This could be due to the inherent nature of the species not being able to rich this size or this could be due to selective logging.

**Phoenix reclinata:** Phoenix reclinata has an irregular population structure in both PFM and free access forest patches. In the PFM forest, diameter classes 1, 5 and 6 are lacking representation. And in the free access forest, diameter classes 1 and 6 are missing. Both forests seem to have poor regeneration but this may not be true. The lack of representation at diameter class 1 is due to the lack of *Phoenix reclinata* individuals with DBH (1.2 - 4 cm) and at the same time with height >2 m. Due to the nature of *Phoenix reclinata*, the seedlings have big diameter but cannot rich the height of 2 m. Therefore, seedlings counted were not measured for diameter because they were smaller than 2 m. Having this fact, it can be said that in the PFM forest there is a better recruitment of the species than in the free access forest. The missing representation of diameter class 5 in the free access forest indicate that selective cutting was carried out. And the lack of representation of diameter class 6 in both forest patches may be due to the inherent nature of the species not being able to rich the size.



**Ehretia cymosa:** In the PFM forest, an abnormal distribution and in the free access forest an inverted "J" shape distribution is depicted. In the PFM forest there is poor regeneration and recruitment. The diameter classes 5 and 6 lack representation indicating that there may be selective logging. In the free access however, there is good reproduction and recruitment. This maybe attributed to the fact that there is ample light reaching the ground making regeneration possible. It is also possible to say that this species have been havily exploted in the past in the free access forest and is now recovering.

**Fagaropsis angolensis:** Fagaropsis angolensis depicted an inverted "J" shape structure in the PFM forest with no diameter representation at diameter classes 4, 5 and 6. This shows that there is poor recruitment but the reproduction seems just good. In the free access forest, the species depictes a structure resembling "J" shape with no representation at diameter classes 2, 3 and 4. This indicated that the species is having poor reproduction. The absence of diameter classes at diameter classes 4, 5 and 6 in the PFM forest indicates that the species is having less presence in the area due to may be ecological requirements. During an interview with the farmers, it was indicated that the species is having fewer representation in the PFM forest over the years. And the lack of representation at diameter classes 2, 3 and 4 in the free acces could be due to little regeneration of the species leading to few recruitees at those diameter classes. The species is mostly desired for its fruit; therefore, this can be one of the reasons for poor regeneration that can be more understood if the soil seed bank is studied.

**Euphorbia ampliphylla:** In both the PFM and free access forests *Euphorbia ampliphylla* depicted an inverted "J" shape. In the PFM forest there is no representation at diameter classes 3, 4 and 5. This shows that the species have been selectively logged. This is also an indication that NTFPs like that of *Euphorbia ampliphylla* are used as alternative wood sources in PFM. The other reason why this species is logged in large amount than in the free access is that it is highly desired for beehive making and the people living around the PFM forest are known to produce much more honey than the farmers living around the free access. In the free access forest, since farmers are able to cut any other tree species



they least prefer *Euphorbia ampliphylla* for other purposes and do not cut it as extensively as that of the PFM forest farmers. The other reason is that they produce honey in small amount and they only cut few and specifically individuals with desirable diameter size. This may be why the diameter class 4 is lacking representation in the free access. Other than that, the species is having good reproduction and recruitment in the free access.

<u>Millettia ferruginea</u>: In both the PFM and free access forests Millettia ferruginea is depicting an abnormal distribution. In the PFM forest, there are no individuals represented at diameter classes 1 and 6. This shows that there is poor regeneration and poor recruitment. But in the free access forest all the diameter classes are represented. And the much representation at the diameter classes 5 and 6 shows that there may be deliberately left individuals so that they can be used as shades for the coffee. *Millettia ferruginea* is the most important coffee shade tree (Diriba Muleta *et al.* 2007). It was also learnt that the free access forest area is found in a coffee production area where forest coffee was found in abundance.

#### **6.10.** Species Diversity

It was found out that the species richness (H') in the PFM forest was higher than in the free access forest. This could be due to the impact of farmers selective logging in the free access. The lower value of the Shannon diversity index in the free access forest is congruent with the hypothesis saying: as there is more selective logging there is the dominance of few early successesional species and lower Shannon index value (Bone *et al.*1797; cited in Feyera Senbeta, 2006). This is also congruent with the result of forest structure (Fig. 10) showing more small-sized individuals in the free access than the PFM forest. And much further explained by the existence of more selective logging in the free access forest than in the PFM forest (Fig. 12). Also the lower evenness value found in the free access forest shows that there is a dominance of fewer species. N.B. low evenness indicates dominance of few species (Feyera Senbeta, 2006).



However, the species diversity in the two forest patches is not that much different may be due to similarity in the site potential, topography, climate, ecology and forest history. N.B. PFM forest has started since in the past few years. And the two forests have intermediate disturbance so that they have high H' value. According to intermediate disturbance hypothesis, diversity is high at sites that had an intermediate frequency of disturbance and will be lower at sites that have very high or very low disturbance frequency (Hanenton et al, 1991: cited in Makenya, 2005).



# 7. CONCLUSION

In Gimbo District, there are about 26 NTFPs and NTFPs categories documented by this study. However, the most important NTFPs that are typical to the study area are: honey and honey wax, coffee, spices and condiments, ground honey (tazma), lianas, *Fagaropsis angolensis* fruit and fern tree. In the study area there is also a big accumulation of herbal medicinal knowledge and medicinal plants are also potentially present. In the study area one bracket fungus species and three mushroom species were identified as edible. It was also noticed that the local people have good demand for these edible mushrooms and bracket fungus. However, the resource is scarse and the scarsity has increased over the years. It is therefore important for the mushrooms and bracket fungus to be domesticated.

Medicinal plants of the study area were known to have their abundance increased over the past few years. But most of the 26 NTFPs have their abundance declined over the past few years while one important NTFP (*Fagaropsis angolensis*) has its abundance highly reduced. Therefore the conservation status of most, if not all, the NTFPs and NTFPs category of the Gimbo District is not good.

In the study area NTFPs with their diversity are present all around the year making them important in the daily life of the farmers. NTFPs are important in that they are source of income through most of the months of the year. It is also to be observed that, NTFPs are major commodities marketed in the local market or produced in the area to be sold in the central market of the country.

The prices of NTFPs have increased in the local markets as well central market. Therefore, farmers are getting better price now than the earlier years. Farmers have also learnt to store some of the NTFPs (honey) so as to sell it at times of better price. However, the rise in price for NTFPs is not due to value addition or production quality but due to, maybe, high demand for the products in the central market.

The density of trees and shrubs in the study area showed that there are more individuals in the PFM forest than in the free access forest. The high number of individuals in the



PFM forest is attributed to the presence of more shrubs in the PFM forest than the free access forest. This may be due to the fact that free access forest is a good source of forest coffee and farmers deliberately cut shrubs in persuit of coffee management. But in the PFM forest, since coffee is not a major product and as a result of PFM , shrubs are left to grow.

With regards to the forest structure, both the PFM and free access forests depicted healthy inverted "J" shape showing good reproduction and recruitment. But in the free access forest there are more small-size individuals than the PFM forest, indicating the forest is more depleted and is in the natural process of recovering. The population structure of the important tree species also showed that in the free access most species are on the process of recovery having many small size individuals. *Olea welwitschii* and *Syzygium guineense* depicted a population structure indicating the depletion of these individuals in the free access forest.

The IVI also showed that in the study area, *Cordia africana*, *Ficus thonningii*, *Dombeya torrida*, *Ekebergia capensis*, *Vernonia auriculifera*, *Fagaropsis angolensis*, *Galinieria saxifrage*, *Pitosporum virdiflourm* and *Psychotria orophilia* are the least important tree species calling for attention for conservation.

The species diversity in the two forest patches seem to be very high and also indicate a small difference between the two forest patches. However the species diversity result i.e. Shannon index and evenness show that there is more selective logging and as a result there is more dominance of fewer species in the free access forest indicating trend of lose of biodiversity in the free access forest if the selective logging practice should continue in the future. The high species diversity recorded by this study also indicates that Gimbo forests and Bonga forest in general are still good source of NTFPs be it herbs for medicine or other NTFPs.

This study did not generate ecological (vegetation) data that supports the PFM through the use of NTFPs is better managing the forest in the study area. However, population



structure of the major NTFPs trees indicated that they do better off in the PFM forest. And The most important plant species used as source of NTFPs are identified by the preference ranking exercice and are; *Olea welwitschii*, *Elaeodendron buchananii*, *Syzygium guineense, Allophylous abyssinicus, Millettia ferruginea*, *Cordia Africana, Ehretia cymosa*, *Euphorbia ampliphylla, Ficus sur, Poutera adolfi-friedericii Shefflera abyssinica* and *vernonia amygdalina* 

Genarally, NTFPs are important in the socio economic, socio cultural and ecological well being of the Gimbo surrounding and the country as a whole. Moreover, Gimbo although having diverse NTFPs, the conservation status of these NTFPs is dwendelling therefore, calling for better attention for better management of the resource.


# 8. RECOMMENDATIONS

- Since NTFPs have peculiar characters like clumpy, rare or ununiform distribution pattern, mobility character and they are many times harvested not as a total plant/animal but part of animal or plant namely root, fruit, gall bladder, feather, etc, it is very hard to get statistically valid inventory of nontimber forest products collectively. Therefore, in the future, it is highly recommended to carry out surveys of NTFPs treating one at a time. This way biometrically sound inventory can be carried out using the conventional forestry measurements. As an example the most important tree species *Fagaropsis angolensis* has to be studied treated alone so that the future management of this endangoured species is possible.
- Investment in and around Gimbo District should not be allowed to be of a direct production and harvesting type. However, it should be restricted to enabling farmers and cooperatives build their capacity to add value to the NTFPs and should only be restricted to commercialization of certain NTFPs like coffee, honey, mushrooms, bamboo, etc. Factories and industries that process NTFPs that the farmers harvest could be established by investors rather than taking up so much of land. To this effect, the scheme for market expansion and commercialization of NTFPs (honey) that is being carried out by SOS-sahel/UK is an exemplary procedure in which other NGOs, GOs and investors should capitalize.
- For certain species whose fruits are desired as a NTFP, e.g. Fagaropsis angolensis, the PFM scheme in the study area should be able to design certain management intervention otherwise the populations of such kind of species will be extinct in the future. This is because the reproduction (regeneration) of the species will be hampered because the fruits collected are not returning to the forest soil.
- Although the forest structure in both the PFM forest and the free access forest depicted an inverted "J" shape which is a good indication for health, in the PFM



forest, the seedlings are being suppressed and individuals at diamer class 1 are small in number than individuals in the diameter class 2. Therefore, it is important to carry out some silvicultural intervention (selective logging) in the PFM forest so as to increase light energy reaching the forest floor.

- Although the population structure of the selected tree species did not clearly depict the extent of depletion of the forest in the free access than the PFM forest, it was observed on the site that PFM is recommended to be a good intervention in the free access forest also. As can be seen from the population structure of the important tree species, the most important tree species; *Syzygium guineense* and *Olea welwitschii* are being depleted in the free access forest.
- Olea welwitschii, Elaeodendron buchananii, Syzygium guineense, Allophylous abyssinicus, Millettia ferruginea, Cordia Africana, Ehretia cymosa, Euphorbia ampliphylla, Ficus sur, Poutera adolfi-friedericii Shefflera abyssinica and vernonia amygdalina should be center of NTFPs conservation plan due to the fact that they are highly desired by the local people as a source of NTFP
- Considering the immense contribution that NTFPs can make to the sustainable development of the nation, NTFPs should be given due attention whereby NTFPs research, development, conservation activities are coordinated at department level at the MoARD. During this study, it was learnt that there is an NGO operating in the Kaffa- Sheka that deals with the development, conservation and research of the NTFPs of the Kaffa -Sheka. This is a good start considering the NTFPs potential of the Kaffa- Sheka. However, the project should expand to all the districts of the southwest including Gimbo.
- The high species diversity recorded in the study area indicates that in the study sites there is more potential of NTFPs and future studies in the area of NTFPs documentation and development should be carried out.



## 9. REFERENCES

- Abate Ayalew and Tamrat Bekele and Sebsebe Demissew (2006). The undifferentiated afromontane forest of Denkoro in the central highland of Ethiopia: a floristic and structural analysis. *SINET: Eth. Journ. Sci.* 29 (1): 45-56
- Abayneh Deraro, Tamrat Bekele and Bert-AkeNaslund (2003). Population structure and regeneration of woody species in broad-leaved Afromontane rain forest, southwest Ethiopia. *Eth.journ.Nat.resou* 5(2):255-280
- Abeje Eshete, Demel Teketay and Hulten, H. (2005). The Socio–Economic Importance and Status of Populations of *Boswellia papyrifera* (Del.) Hochst in Northern Ethiopia: The Case of North Gondar Zone. *Forests Trees and Livelihoods*, Vol. 15; pp 55– 74. A B Academic Publishers, Great Britain.
- Abiyot Berhanu, Zemede Asfaw and Ensermu Kelbessa (2006). Ethnobotany of plants used as insecticides, repellents and antimalarial agents in Jabitehnan District, West Gojjam. *SINET: Eth. Journ. Sci.* 29 (1): 87-92
- AGRIBUSINESS_a (2004). Transforming lives and landscapes: Linking Agroforestry and NTFPs farmers to the market (consultancy report). Farm- Africa and SOS-Sahel participatory forest management programme. Addis Ababa, Ethiopia
- AGRIBUSINESS_b (2004). Commercialization of Medicinal plants in Bonga (project Profile). Addis Ababa, Ethiopia
- Araya Hymete, Iversen, T.H and Rohloff, J. (2006). Essential oil from seeds and husks of Aframomum corrorima. Flavour Fragr. J. 21: 642–644. Published online 17 March 2006 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/ffj.1634
- Arnold, J.E.M. (1996). Framing the issues relating to Nontimber Forest Products research.
  In: Ruiz Pe'rez, M., Arnold, J.E.M. (eds.), Current issues in Nontimber Forest Products research. Center for International Forestry research, Bogor, Indonesia, pp.1-18
- Arnold, M. and Pérez, R.M. (1998). The role of non timber forest products in conservation and development. In: Wollenburg and Ingles (Eds.), Incomes from the forest. Methods for the development and conservation of forest products for local communities. CIFOR, Bogor, Indonesia.
- Arnold, M. and Townson, I. (1998). Assessing the Potential of Forest Product Activities to Contribute to Rural Incomes in Africa. *NaturalResource Perspectives* Number 37.London, UK: Overseas Development Institute
- Azene Bekele,Bein,E., Habte,B., Jaber,A., Birnie, A. and Tanganas,B. (1996).Useful trees and shrubs in Eritrea. Identification, propagation and management for agricultural



and pastoral communities. Technical hand book  $N^{\circ}$  12. Bo Tengnas (eds.). Regional soil conservation unit (RSCU). Nairobi, Kenya

- Balakrisnan, N. (2000). Sustainable utilization of gum and resin by improved tapping technique in some species. Seminar proceedings harvesting of Non-wood forest products. Menemen-izmir, Turkey
- Bell J. (1995). The hidden harvest. In: Seedling, the Quarterly Newsletter of Genetic ResourcesActionInternational.

## www.grain.org/publication

- Beijinene, J.V., Mostertman, I., Renkema, G. and Vliet, J.V. (2004). A publication by Non Timber Forest Products Research and Development Project in S-W Ethiopia. Baseline description of project area: Summary of participatory appraisal data at Kebele and Got level (Student Research series No. 1). Wageningen.
- Bradbear, N. (2004). *Beekeeping and Sustainable Livelihoods*. Agricultural Support Systems Division Food and Agriculture Organization of the United Nations, Rome.
- Chamberlain, J. L., Bush, R. J., Hammett, A. L. and Araman, P. A.(1998). "Nontimber Forest Products: the other Forest Products."In: *Forest products journal*.Overseas development Institute, London UK48 (10):2-12 pp
- Chamberlain, J. L., Bush, R. J., Hammett, A. L. and Araman, P. A. (2002), 'Eastern National Forests: Managing for Non-timber Products', In: *Journal of Forestry* 24(6): 45-57pp
- Chamberlain, J. L., Bush, R. J., Hammett, A. L. and Araman, P. A.(2004). Non-timber Forst products in Suatainable Forest management. USDA Forst Service, Southern Research
- Christina, P. and Ulrik, B. (2002).GTZ strategy for Developmental Cooperation in East Africa. Frederich Eberts-Alleo, Bonn, Germany
- Colinvaux, P. (1986). Ecology. John wiley and sons, inc. Hong Kong. 725p
- Coppen, J. J. W. (1995). *Gum resins and latex of plant origin*.**In**: Non-wood forest products. Food and Agriculture Organization of United Nations. Rome.
- Cotton C.M. (1996). Ethnobotany: principles and applications. John Wiley and Sons Ltd. Chichester, England. 403p
- Cowlishaw,G., De Merode, E., Homewood,K. (2003). The value of Bushmeat and other Wild foods to Rural households living in extreme poverty in Democratic Republic of Congo.

Available on line at www.Sciencediret.com



- Cunningingham, A.B. (2001). *Applied Ethnobotany: people, wild plants use and conservation*. Earthscan publications Ltd, London.612p
- Davision, R. L. (1980). *Handbook of water-soluble gums and resins*. McGrow Hill Book Company, New York.
- Dawit Abebw, Asfaw Debella and Kelbessa Urga (2003). Medicinal plants and other useful plants of Ethiopia; Illustrated checklist. Camerapix Publishers International. Nairobi, Kenya. 312p
- Dawit Abate (1998). *Mushroom cultivation* (a practical approach).Berhanena selaM printing enterprice. Addis Ababa. 217pp
- Dennis, V. J. (1998). Palms of the world. FAO, Rome
- Diriba Muleta, Fassil Asefa, Sileshi Nemomisa and Granhall, U. (2007). Composition of coffee shade tree species and density of indiginious arbuscular mycorrizal fungi (AMP) spores in Bonga natural coffe forest, south western Ethiopia. In: Forest ecology and management volume 241, Issue 1-3.Elsevier B.V. (science direct). 145-154 pp
- Duangsa, D. (1996). Principles of a proposed participatory rural appraisal model and implications for practice: report on the participatory rural appraisal workshope, Indonesia sub regional high lands peoples program, Vietnam.UNV homehttp://www.unv.org
- Ensermu Kelbessa, Sebsebe Demissew, Zerihun Woldu and Edwards, S. (1992). Some Threatened Endemic plants of Ethiopia. In: Edwards, S. and Zemede Asfaw (eds.), *The status of some plants in parts of tropical Africa*. pp. 35-55. *NAPRECA*, No.2.Botany 2000: East and Central Africa.
- Ensermu Kelbessa, Tamrat Bekele, Alemayehu, Gebrehiwot and Gebremedhin Hadera (2000). A Socio-economic case study of the Bambbo sector in Ethiopia: Analysis of the production-to-consumption system. INBAR publication. 44p
- Ermias Lulekal, Ensermu Kelbessa, Tamrat Bekele and haile Yenger(2008). An Ehnobotanical study of Medicinal Plants in Mena Angatu District, SouthEast Ethiopia. **In**: *Journal of Ethnobiology and Ethnomedicine* 4:10-
- EFAP (1994). Final report volume 2- The challenge for development and volume 3- Issue and action. Ministry of Natural Resources Development and Environmental Protection, EFAP (Ethiopian Forestry Action Plan) secretariat, Addis Ababa
- FARM-Africa / SOS Sahel Ethiopia, Oromiya Bureau of Agriculture and Rural Development and Southern Nations and Nationalities Peoples' Region Bureau of Agriculture and Rural Development. (2007). The Key Steps in Establishing Participatory



Forest Management: A field manual to guide practitioners in Ethiopia. In: Best practices series No.1. FARM-Africa and SOS Sahel Ethiopia

- Feyera Senbeta (2006). Biodiversity and ecology of Afromontane rainforests with Wild *Coffee arabica* L. populations in Ethiopia. Doctoral Dissertation
- Feyera Senbeta, Schmitt, C., Denich, M., Sebsebe Demissew, Velk, P.L.G., Preisinger, H., Tadesse Woldemariam (2005). The Diversity and Destribution of Lianas in the Afromontane Rainforest of Ethiopia. In: Diversity and Distribution: A journal of Conservation Biogeography 11(5): 443-454pp
- Friis, Ib, Rasmussen, F. N. and Vollesen, K. (1982). Studies in the flora and vegetation of southwest Ethiopia. Opera Botanica 63, Copenhagen
- Gentry, A.H. (1988). Tree species richness of upper Amazonian forests. **In**: *Proc. Natl. Acad. Sci.* USA. 85: 156-159.
- Getachew Dessalegn and Wubalem Tadesse (2004). Socioeconomic Importance and Resource Potential of Nontimber Forest Products of Ethiopia.**In**: Wubalem Tadesse and Michael Mbogga (eds.), Proceeding of the National workshop on Nontimber Forest Products in Ethiopia.EARO,IPGRI. Addis Ababa, Ethiopia
- Girma Defar. (1998). Non-wood forest products in Ethiopia. Food and Agriculture Organization of the United Nations, Rome
- Greenwood, J.J.D. (1996). Basic techniques. In: Sutherland, W.J. (eds.), *Ecological census* techniques. Cambridge University Press. 11-110pp
- Grenier, L. (1998). Working with Indigenous Knowledge: A Guide for Researchers. International Development Researcher Center. Ottawa
- Gronow, J. and Safo, E. (1996). Collaborative forest resource assessment surveys for the management of community forest reserves in Ghana.. In: Carter, J. (eds.), Recent approaches to participatory forest resource assessment. Rural development forestry study guide 2. ODI, London. 111-134 pp.
- Hitimana, J, Legilisho, J Joseph, K and Thairu Njunge, Th. (2004). Forest structure characteristics in disturbed and undisturbed sites of Mt. Elgon Moist Lower Montane Forest, western Kenya. In: *Forest Ecology and Management* Volume 194, Issues 1-3, Pages 269-291. Elsevier B.V.
- Howes, F. N. (1950). Age-old Resins of the Mediterranean region and their uses. In: *Economic Botany* **4**: 307–316.
- H.R.2466. (1999). Department of Interior and Related Agencies Appropriation Act, 2000, U.S. House of Representatives Bill, sent to the president October 1999



103

http://en.wikipedia.org/wiki/Coffea_arabica, cited on 3, 1, 2007

http://davesgarden.com/terms/go/573/, cited on 3/1/2007

http//www.plantcultures.org.uk cited on October11, 2006

- Jansen, P.C.M (1981). Spices, Condiments and Medicinal plants in Ethiopia, their taxonomy and agricultural significance. College of agriculture, Addis Ababa, Ethiopia and Agricultural University, Wageningen, Netherlands.327p
- Jonathan M.H. (2000). Basic principles of sustainable development. Global Development and Environment Institute working paper 00-04, Tufts University
- Kassahun, Embaye (2003). Ecological aspects and resource management of bamboo forests in Ethiopia. Tryck: SLU Service/Repro, Uppsala.
- Kassahun Embaye (2004). Potential of Ethiopian Bamboo Forest in Biodiversity Conservation, Environment Improvement and Socioeconomic Development. In: Wubalem Tadesse and Michael Mbogga (eds.), Proceeding of the National Workshop on Nontimber Forest Products in Ethiopia. EARO, IPGRI. Addis Ababa, Ethiopia
- Kendeya Gebre Hiwot (2003). Ecology and management of *Boswellia papyrifera* (Del.)
  Hochst. Dry forest in Tigray,North Ethiopia. Doctoral Dissertation submitted for the degree of Doctor of Forest Science in the Faculty of Forest Science and Forest Ecology. George-august- university of Gottingen, Gottingen.
- Khan, M.L., Rai, J.P.N., Tripathi, R.S. (1987). Population Structure of Some Tree Species in Distributed and Protected Sub-tropical Forests of Northeast India. Acta Oecol. 8, 247–255.
- Kidane Mengistu (2002). Tropical Secondary Forest Management in Africa: reality and perspectives, Ethiopia country paper. In: The Proceeding of the Workshop on Tropical Secondary Forests Management in Africa: reality and perspectives. In collaboration with ICRAF and CIFORN. Nirobi, Kenya.
- Kent, M. and Coker, P. (1994). Vegetation Description and Analysis: practical approach. Belhaven press, London
- Kumar, S. and Shankar, V. (1982). Medicinal plants of Indian Desert: *Commiphora wightii* (Anott) Bhand. *In: Journal of Arid Environment* **5**: 1–11pp
- Kumelachew Yeshitela(1997). An Ecological study of the Afromontane vegetation of Southwestern Ethiopia. MSc. Thesis.Addis Ababa University



- Lamprecht, H. (1989). Silviculture in the Tropics. Tropical Forest Ecosystem and their tree Species-Possibilities and Methods for their long term utilization. Institute for Silviculture of the University of Gottingen. Technical cooperation-federal republic of Germany, Berlin. 296pp
- Larbach, J, Russo, L and Vatomme, p. (2002). Needs and constraints for improved inventory and harvesting techniques for Non-wood forest products. FAO, forestry department, Rome
- Makenya, C.A. (2005). Wild Plants Use by Local Communities within the "Kwakuchinja" wild life corridor in Tarangire Manyara Ecosystem, Tanzania. MSc Thesis, Addis Ababa University
- Mantel, C. L. (1950). The natural hard resins: Their botany, source and utilization. In: *Economic Botany* **4**: 203–242.
- Martin, G.J. (1995). *Ethnobotany: A methods manual*. Chapman and Hall, NY.268 p
- Mallik, R.M.(2001). Commercialization of NTFPs in Orissa: Economic Deprivation and Benefits to Primary Collectors. Paper presented at South and East Asian Countries NTFP Network (Seann) Workshop on Non-Wood Forest Products and Biodiversity: Seann Agenda for Conservation and Development in the 21st century at Manila, Philippines, 16-19 September.
- Million Bekele (2001). Ethiopia's Forestry Sector Development. Forestry out look studies in Africa (FOSA). Ethiopia
- Neumann,R.P., Hirsch, E.(2000). Commercialization of Non-Timber Forest Products: Review and Analysis of Research. Center for International Forestry research , Bogor, Indonesia. 176 p
- Newell, R. (1993). Questionnaires. In: Gilbert, N. (Eds.), *Researching Social Life*. SAGE publications Ltd., London
- Oxfam (2002). Bitter coffee: how the poor are paying for the slump in coffee prices. Oxfam International, London.
- Peters, C.M. (1996). The ecology and management of NTFP resource.world bank technical paper 322, Washington
- Rao, K. (1998). Vegitation and Nontimber Forest Products Assessment under JFM in Eastern Ghats of Andara Pradesh, India. Cited on June 7 2006 from: <u>http://www.indiana.edu/~iascp/drafts/rao.pdf</u>
- Raven P.H and Johnson G.B (1991). Understanding Biology (2nd edition). Mosby-year book, inc.1025p



- Richards, M. (1993). The potential of non-timber forest products in sustainable natural forest management in Amazonia. **In**: *Commonw. For. Rev.*, 72(1): 21-27.
- Rijsoort, J.V (2000). Nontimber forest products (NTFPs) their role in sustainable forest management in the tropics. Theme Studies Series 1.Forests, Forestry and Biological Diversity Support Group.National Reference Centre for Nature Management (EC-LNV), International Agricultural Centre (IAC).Wageningen, the Netherlands
- Salanga R.J (2004). Diversity, Distribution and Potential Values of Vegetables in MOGORI Division, Singada-Tanzania.MSc Thesis, Addis Ababa University
- Satyawati, G. V. (1991). Guggulipid. A promising hypolipidaemic agent from guggul (Commiphora wightii) In: Wagner, H. (eds.), Economic and Medicinal Plant Research Vol. 4, pp. 47–80. Academic Press, Harcourt Brace Javanovich, London.
- Saxena (2003). Livelihood Diversification and Nontimber Forest Products in Orissa: Wider Lesson on the Scope for Policy Change. Working paper 223
- Schmitt, C.B. (2006). Montane rainforest with wild *Coffea arabica* in the Bonga region (SW Ethiopia): plant diversity, wild coffee management and implications for conservation. Cuvillier Verlag, Göttingen, Germany, Ecology and Development Series No. 48.
- Singh, R.V. (1997). Evolution of Forest Tenures in India: Implications for Sustainable Forest management (BC1500-1997AD). Unpublished PHd Thesis. Vancouver, Canada: The University of British Columbia
- Stellmacher, T. (2005). Institutional Factors shaping Coffee Forest Management inEthiopia. The Case of Bonga Forest/Kaffa Zone.Conference Paper presented on International Trade and the Protection of Natural Resources in Ethiopia.German Ethiopian AssociationWannseeforum, Berlin
- SUPAK/ Kaffa Zone Agricultural and Natural Resource Desk (2004). Forest Resource Distribution: Methodology, Forest Coffee Distribution, Plantation Forest Distribution. A consultancy paper. Bonga/Kafa
- Tadesse Woldermariam Gole (2003). Conservation and Use of Coffee genetic Resources in Ethiopia: Challenges and Opportunities in the Context of current global Situations. A ZEF publication <u>http://www.coffee.uni-bonn.de/project-outputs.html</u>
- Tamrat Bekele (1993). Vegetation Ecology of the Remnant Afromontane Forests on the Central Plateau of Shewa, Ethiopia. ACTA Phytogeographica Suecica 79.Opulus Press, Sweden: 64



- Tamrat Bekele (1994). Phytosociology and Ecology of a Humid Afromontane Forest on the Central Plateau of Ethiopia.**In**: *Jour. of veg.sci.* 5 (87-98).IAVS.Uppsala, Sweden
- Taye Bekele (2003). The Potential of Bonga Forest for Certification, a case study. Paper prepared for the National Stack Holders Workshop on Forest Certification. IBCR, Farm Africa and SOS Sahel. Addis Ababa, Ethiopia
- Tewari, D.D. and Campbell, J.Y. (1997). Economics of Nontimber Forest Products. In: J.M.Keer, D.K.Marothia, K. Singh, C. Ramaswamy and W.B. Bentley (eds.). *Natural Resource Economics: Theory and Application*, New Delhi and Oxford: Oxford and IBH
- USDA Forest Service (1984). Regional Guide for the Southern Region. Atlanta, Georgia. 100pp. + Appendices
- Wannakrairoj, S and Wondyifraw Tefera (2004). A Micropropagation Method for Korarima (Aframomum corrorima (Braun) Jansen). In: ScienceAsia 30: 1-7. Nakhon Pathom.
- Wilinson K. and Elevitch C. (2005). Nontimber Forest Products: an introduction. Available at <u>http://www.agroforestry.net/overstory/overstory53.html</u>
- Wollenburg, E., Ingles, A. (1998). In: Emanuel, P.L.et al.(Eds.), Income from Forest. Methods for the development and conservation of Forest Products for Local Communities. CIFOR, Bogor, Indonesia
- Wong, J.L.G(2000). The Biometrics of Nontimbet Forest Products Resource Assessment: A review of current methodology. United Kingdom Department of International Development(DFID). 174p
- Zemede Asfaw (1997). Survey of Indigenous Food crops, their preparations and homegardens in ethiopia.United Nations Institute for natural resources in Africa. Africa traditional Food crops and useful plants. Series No B6. ICIPE Science press,Nairobi



### **10. ANNEXES**

Annex 1. Data Collect	ion tools				
A) Checklist of questi	ons for the se	mi structur	red interview of	of the household survey	7.
Date:	_Questioner N	No:	_Name of inte	rviewer: <u>Fisseha Asme</u>	<u>elash</u>
Particulars of the area:					
Name of the village:					
Sociodemographic da	<u>ta</u>				
Name of the responden	t (optional): _				
Sex (mark bi tick): Ma	le Femal	e			
Ethnic:					
Age (Ask or estimate):	15-24	25-34	35-44	above 44	

### Questions on cultural knowledge and ethnobotany

- 1. Do you know any NTFPs that are found in your area? Yes/No
- 2. If yes, what are those NTFPs that you get in your area?
- 3. Which plant parts are preferred for the specific NTFPs you get in your area?
- 4. What are the habit and habitat of the plant species that you mentioned above?
- 5. Which plant pars are preferred for the specific NTFPs?
- 6. How do you harvest NTFPs? (Cutting parts, felling plants, up rooting.....)
- 7. Prioritize the NTFPs in order of importance and value.
- 8. Is honey one of the NTFPs in your area? If yes,



a) D	o you use	traditional,	modern	or both	traditional	and	modern	bee	hives'	?
------	-----------	--------------	--------	---------	-------------	-----	--------	-----	--------	---

b) How many beehives do you have?

Traditional _____

Modern _____

c) How many of the bees hives do usually bare honey? ( as a ratio or percentage)

Traditional _____

Modern _____

d) Frequency of harvesting per bee hive per year

Traditional _____

Modern _____

e) Quantity of honey harvested per bee hive

Traditional _____

Modern _____

- f) How do you make traditional bee hives? And what plant species are used for making bee hives?
- 9. When did you start harvesting NTFPs(1: since time in memorial, 2: ten years before, 3: very recently)
- 10. Do you get all the NTFPs from the forests? If no, where else do you get it?(1: in the farm land, 2: in the home stead)
- 11. If you get the NTFPs from the farmland and homestead, who plants them?
- 12. If you are the one to plant them, when did you start this activity? (1: since time in memorial, 2: ten years before, 3: very recently)



- 13. Are you allowed to harvest NTFPs from the forests? Yes/No
- 14. How is the trend of abundance of the major NTFPs in the forest?
  - a) Before five years?
  - b) Within this five years?
- 15. Which of the NTFPs found in your area is used by children, men, and women?
- 16. What are your major activities during the months of the year?
- 17. What are the major crops that you grow? How much is sold to the market and how much is consumed?
- 18. What are the diary products that you produce? How much ids sold to the market and how much is consumed?
- 19. How much of the NTFPs harvested is utilized in the house, sold to the market, spoiled?
- 20. Which NTFPs is sold in good price, spoiled more? The NTFPs from the forest or the NTFPs from the home stead and farm land? What do you think is the reason?
- 21. What uses is known by the people for the specific NTFPs that are harvested?
- 22. How much is the price of the specific NTFPs in the local market and central market?
- 23. How much of the specific NTFPs do you usually harvest per year?
- 24. Which of the NTFPs require much labor and time during harvesting, processing and storing?
- 25. What are the major problems of the specific NTFPs either during harvesting, processing and storing?
- 26. To whom you sell your NTFPs? To the local dwellers, merchants or others/



- 27. How many times a year do you harvest the specific NTFPs?
- 28. Which NTFPs regenerate fast after harvesting? Which die and which regenerate slow after harvesting?
- 29. Is there any kind of management activity carried out by people in your area towards the NTFPs found in the forest?
- 30. What are some of the wild animals found in your area?
- 31. Are there any wild animals recently noticed? Which are those species?
- 32. Are there any wild animals recently disappeared? Population reduced?
- 33. Are any of the wild animals edible? If so name them.
- 34. Are any of the wild animals known to cause damage?
- 35. What do you use for fuel? Fuel wood, char coal...
- 36. Do you grow Enset? If yes,
  - a) How much Enset do you have?
  - b) How much Enset is harvested per year?
  - c) What do you make out of Enset?
  - d) Is Enset found in the forest?

### B) Semi structured interview checklist for Market Survey

Name of the respondent (Optional)						
Sex (mark by tick) Ma		Male		Female	e	
Age (ask or estim	ate) 15-2	24	25-34	35-45	above 45	
Type of Vender	a) Ambulat	ory b	) Temporary	c) Permaner	nt	
Adress (Kebele) _						



- 1. Which NTFPs have a market value?
- 2. Are you engaged in any business that requires NTFPs? If yes, which ones?
- 3. Which NTFP is more prefferd for your business?
- 4. Which NTFP fetch you more cash income? Why?
- 5. Which NTFP fetch you less cash income? Why?
- 6. To whome do you sell NTFPs?
- 7. What is the price of the different NTFP sold in the area?
- 8. How many times do you sell NTFPs a week?
- B) Items for guided field walk

Name of village: Name	of responder	nt (optional	)	
Sex (mark by tick): Male	Female			
Ages (ask or estimate): 15-24	25-34	35-44	above 44	
1. How do you call thins plant/Anim	al or mushro	om?		
2. Why do you call it so?				
3. What are its uses?				
4. When is these plant/animal or mus	shroom most	important?	,	
5. How is the availability of these pla	ants/animals	or mushroo	oms?	
6. How is the trend of the availability of these plants/animals or mushrooms?				
7. How is the availability of these p	lants/animals	s or mushre	poms before and after the	
PFM scheme?				

8. How many trees do you think a single farmer needs for energy?



Coll No	Scientific names	Habit	Local names	language
FA1	Apodytes dimidiata E.mey ex.	Т	Wundifo	kaffa
	Ern.			
FA 2	Syzygium guineense (Wild.)DC	Т	Yinoo	kaffa
FA 3	Oxyanthus speciosus DC.	Т	Ophero	kaffa
FA 4	Vepris dainellii(Pich-	Т	Mengirexxoo	kaffa
	Serm)Kokowaro			
FA 5	Chionathes mildbraedii (Gilg	Т	Shigiyo	kaffa
	& schellenb.) Stearn			
FA 6	Galiniera saxifrga(Hochst.)	Т	Diidoo	kaffa
	Bridson			
FA 7	Olea welwitschii (Knobl.)Glig	Т	Yahoo	kaffa
	& Schellenb.			
FA 8	Allophylus abyssinicus	Т	Shee'oo	kaffa
	(Hochst.) Radlkofer.			
FA 9	Rytigynia	Т	Naxxaachoo	kaffa
	neglecta(Heirn)Robyns			
FA 10	Ocotea kenyensis (Chiov.)	Т	Najjoo	kaffa
	Robyns &wilezek			
FA 11	Millettia ferruginea	Т	Bibero	kaffa
	(Hochst.)Bak.			
FA 12	Canthium oligocarpum Hiern.	Т	Xxixxidiboo	kaffa
FA 13	Phoenix reclinata Jacq.	Т	Zembaba	kaffa
FA 14	Lepidotrichilia volkensii	Т	Yebboo	kaffa
	(Gurke) Leory			
FA 15	Schefflera abyssinica (Hochst.	Т	Butto	kaffa
	ex A.Rich.) Harms			
FA 16	Macaranga capensis	Т	Shaakeroo	kaffa
	(Baill.)Sim			
FA 17	Croton macrostacyus Del.	Т	Wagoo	kaffa
FA 18	Ficus thonningii Blume.	Т	Xigaagoo	kaffa
FA 19	Bersama abyssinica Fresen.	Т	Booqqoo	kaffa
FA 20	Dracaena steudneri Engler	Т	Yuddo	kaffa
FA 21	Elaeodendron buchananni	Т	Waasho	kaffa
	(Loes.)Loes.			
FA 22	Fagaropsis	Т	Yaayo	kaffa
	angolensis(Engl.)Dale			
FA 23	Prunus Africana	Т	Oomo	kaffa
	(Hook.f.)Kalkm.			
FA 24	Podocarpus falcatus	Т	Xiidoo	kaffa
FA 25	Dombeya	Т	Shawkoo	kaffa
	torrida(J.F.Gmel.)P.Bamps			
FA 26	Dracaena afromontana	Т	Chookmatoo	kaffa

Annex 2: Names of plant species identified in the area



	Mildber.			
FA 27	Margaritaria discoidea		Gaaboo	Kaffa
	(Baill.)Webster			
FA 28	Euphorbia ampliphylla Pax	Т	Kulkual	Amharic
FA 29	Trema orientalis (L.) Bl.	Т	Shoottoo	kaffa
FA 30	Teclea nobilis Del.	Т	Shengaaro	kaffa
FA 31	Ficus ovata Vahl	Т	Caaroo	kaffa
FA 32	Pouteria adolfi-	Т	kerero	Amharic
	friedericii(Engl.)Baehni			
FA 33	Pittosporum virdiflorum Sims	Т	Sholloo	kaffa
FA 34	Albizia gummifera (J.F.Gmel.)	Т	Caatto	kaffa
	C.A. Sm.			
FA 35	Ilex mitis (L.) Radlk.	Т	Qetoo	kaffa
FA 36	Polyscias fulva (Hiern.)Herms	Т	Qaaresho	kaffa
FA 37	Albizia grandibacteata Taub.	Т	Qoyo	kaffa
FA 38	Cyathea manniana Hook.	Т	Sheeshino	kaffa
FA 39	Oncoba spinosa Forssk.	Т	Shooratoo	kaffa
FA 40	Crdia Africana Lam.	Т	D'io	kaffa
FA 41	Vangueria apiculata K.Schum.	Т	Qerallo	Kaffa
FA 42	Ehretia cymosa Thonn.	Т	Wegamoo	kaffa
FA 43	Celtis africana Brum.f.	Т	Ufoo	kaffa
FA 44	Pavetta abysinica Fresen.	Т	Tushimoo	kaffa
FA 45	Ficus sur Forssk.	Т	Caberroo	kaffa
FA 46	Vernonia amygdalina Del.	Т	Giraawo	kaffa
FA 47	Maesa lanceolata Frossk.	Т	Ceegoo	kaffa
FA 48	Vernonia auriculifera Hiern.	Т	Dangeraxoo	kaffa
FA 49	Protea gaguedi J.F. Gmel.	Т	Xumoo	Kaffa
FA 50	Lannea fruticosa (A.Rich.)	Т	-	-
	Engl.			
FA 51	Arundinaria alpina L.	Т	Shiinaato	kafa
FA 52	Sapium ellipticum (Krauss)	Т	Shedoo	kaffa
	Pax.			
FA 53	Ekebergia capensis Sparrm.	Т	Orooroo	kaffa
FA 54	Dinbollia kilimandscharica	Т	Qaqerechoo	kaffa
	Taub			
FA 55	Landolphia buchananii	Cl.	Yemoo komboo	kaffa
	(Hall.f)Stapf			
FA 56	Jasminum abyssinicum	Cl.	Haawetoo	kaffa
	Hochst.ex.Dc.		komboo	
FA 57	Comperatum paniculatum	Cl.	Begoo komboo	kaffa
	Vent.			1 22
FA 58	Paullinia pinnata L.	Cl.	Beyroo komboo	kaffa
FA 59	Cissus quadriangularis L.	Cl.	Caomoo	kaffa
			komboo	
FA 60	<i>Embelia schimperi</i> Vatke.	Cl.	Dupoo komboo	kaffa



FA 61	Hippocratea goetzei Loes.	Cl.	Qaawo komboo	kaffa
FA 62	Stephania abyssinica (Dillon et	Cl.	E'koo komboo	kaffa
	A.Rich.) Walp.			
FA 63	Tliacora troupinii Cuf.	Cl.	P'eo komboo	kaffa
FA 64	Clematis longicauda	Cl.	Shaago komboo	kaffa
	Steud.ex.A.Rich			
FA 65	Clematis hirusta Perr. & Guill.	Cl.	Shudoo komboo	kaffa
FA 66	Gouania longispicata Engl.	Cl.	Aceebenoo	kaffa
			komboo	
FA 67	Solanecio gigas (Vatke)	T/Sh/	-	-
	C.Jeffrey	Н		
FA 68	<i>Coffea arabica</i> L.	Sh.	Bunnoo	kaffa
FA 69	Rungia grandis T.Anders.	Sh.	Huxxoo	kaffa
FA 70	Clausena anisata	Sh.	Emmbriicoo	kaffa
	(Willd.)Benth.			
FA 71	Catha edulis(Vahl) Frossk.ex	Sh	Chat	Amharic
	Endl			
FA 72	Mythenus gracilipus(Welw.ex.	Sh.	Shiikoo	kaffa
	Oliv.)Exell			
FA 73	Dracaena fragrans (L.) ker-	Sh.	Emmo	kaffa
	Gawl.			
FA 74	Rothmannia	Sh.	Dibboo	kaffa
	urcelliformis(Hiern)Robyns			
FA 75	Psychotria orophila Petit	Sh.	Aaemmatoo	kaffa
FA 76	Erythrococca trichogyne	Sh.	Biicerkuucho	kaffa
	(Muell.Arg.)Prain			
FA 77	Dalbergia lactea Vatke	Sh.	Bitbitoo	kaffa
FA 78	Rubus studneri Schweinf.	Sh.	Geroo	kaffa
FA 79	<i>Myrsine africana</i> L.	Sh.	Shuratoo	kaffa
FA 80	Brucea antidysenterica J.F.	Sh.	Nuuqishoo	kaffa
	Mill.			
FA 81	Acanthus eminens C.B.Clarke	Sh.	Pecho	kaffa
FA 82	Justica shimperiana (Hochst.	Sh.	Shesheroo	kaffa
	Ex. Nees) T.Anders.			
FA 83	Hibiscus berberidifolius	Sh.	Sheroo	kaffa
	A.Rich			
FA 84	Rhamnus prinoides L'Herit	Sh	Gesho	Amharic
FA 85	Dodonea angustifolia L.f	Sh	-	-
FA 86	Nicotiana tabacum L.	Sh	-	-
FA 87	Sida tenuicarpa Vollesen	Sh/H	-	-
FA 88	Thelypteris confluens Schott	Н	Giixoo	kaffa
FA 89	Oplismenus hirtellus	Н	Yawello	kaffa
	(L.)P.Beaur			
FA 90	Achyranthes aspera L.	Н	Gecoo	kaffa
FA 91	Hypoestes forskaolii Roem. &	Н	Qoorro	kaffa



	Schult			
FA 92	Impatiens hochstetteri Warb.	Н	E'qeeqo	kaffa
FA 93	Aframonum corrorima(Braun)	Н	Qoroorima	kaffa
	Jansen			
FA 94	Cyprus rigdifolius Steud.	Н	Micoo	kaffa
FA 95	Dichrocephala	Н	Shutti	kaffa
	<i>integrifolia</i> (L.f) kuntze			
FA 96	Ocimum lamiifolium Hochst	Н	Yemich	Amharic
	ex.Bent		medhanit	
FA 97	Piper capense L.f	Н	Turffoo	kaffa
FA 98	Satruja paradoxa(Vatke) Engl.	Н	Tebbelesh	kaffa
FA 99	Amorphophallus gallaensis	Н	Shiimbiishiixxo	kaffa
	(Engl.)N.E.Br.			
FA 100	Aframomum	Н	Yezenjero	Amharic
	zambesiacum(Baker)K.Schum		korerima	
FA 101	Isoglossa punctata	Н	Yulii gecoo	kaffa
	(Vahl)Brumitt & Wood			
FA 102	Phaulopsis imbricata sub sp	Н	Sheetii qeffo	kaffa
	Imbricata (Forssk.)Sweet			
FA 103	Sida rhombifolia L.	Н	Shetto	kaffa
FA 104	Ranunculus multifidus Forssk.	Н	Hogioo	kaffa
FA 105	Ajuga alba(Gurke) Robyns	Н	Herb14	-
FA 106	Leonotis nepitifolia(L)R.Br	Н	Herb10	-
FA 107	Thalictrum schimperiannum	Н	Nerine	kaffa
	Hochst.ex.Schweinf			
FA 108	Asparagus asparagoides	Н	Ufoo	kaffa
	(L.)Weight			
FA 109	Pentas lenceolata (Forssk.)	Н	Herb7	-
	Deflers			
FA 110	<i>Olyra latifolia</i> L.	Н	Hotto	kaffa
FA 111	Bidens prestinaria (Sch.Bip.)	Н	Kello	kaffa
	Cufod			
FA 112	Comelina difusa Burm.f	Н	Nallexxo	kaffa
FA 113	Nelsonia Thomsonii	Н	Haagio	Kaffa
FA 114	Impatiens ethiopica Gery-	Н	-	-
	Wilson			
FA 115	Lannea shimperi (A.Rich.)	Н	-	-
	Engl.			
FA 116	Lantana camara L.	Н	-	-
FA 117	Senna septemtrionalis	Н	-	-
FA 118	Colocasia esculenta	Н	-	-
	(L.) Schott.			
FA 119	Nelsonia canescens(Lam.)		-	-
	Spreng.			
FA 120	Isoglosa somalensis Lindau	Н	-	-



FA 121	Urera hypselodendron	Н	-	-
	(A.Rich.)Wedd.			
FA 122	Solanecio mannii (Hook.f.)	Н	-	-
	C.Jeffrey			
FA 123	Utrica simensis Setudel	Н	-	-
FA 124	Gutembergia ruepelli Sch.Bip.	Н	-	-
FA 125	Pentas cafensis Chiov.	Н	-	-
FA 126	Triumfetta brachyceras	Н	-	-
	K.Schum.			
FA 127	Cyperus dichroostachyus	Н	-	-
	A.Rich			
FA 128	Antheum foeniculum L.	Н	-	-
FA 129	Verbena officinalis L.	Н	-	-
FA 130	Persicaria	Н	-	-
	senegalensis(Meisn.) Sojak.			

Annex 3: List of the Key Informants in the study

No	Name of key Informant	Kebele	Sex	Age
1	Admasu H/mariam	yeyobito	Μ	21
2	Alemayehu Keyto	yeyobito	Μ	40
3	Admasu Abamecha	yeyobito	Μ	18
4	Gezahegn Gebere	yeyobito	Μ	23
5	Abebech Haile	yeyobito	F	40
6	Abebech W/youhannes	yeyobito	F	46
7	Timotios Manchalew	yeyobito	Μ	45
8	Abebe Abafogae	yeyobito	Μ	40
9	Hailemariom	yeyobito	Μ	38
10	Hagerae Alemu	yeyobito	F	40
11	Wudinesh W/michael	Bitachega	F	28
12	G/yesus G/michael	Bitachega	М	50
13	Haile Desta	Bitachega	Μ	50
14	G/Giorgis Keno	Bitachega	М	80
15	Zeryihun Bahiru	Bitachega	Μ	14
16	Abate W/selasse	Bitachega	Μ	25
17	Azage Habte	Bitachega	Μ	28
18	Aklilu H/Yesus	Bitachega	Μ	18
19	W/senbet Habte	Bitachega	Μ	42
20	Ayele G/Meskel	Bitachega	Μ	28
21	Getachew Berhanu	Qeja Araba	Μ	38
22	Wondimu G/Giorgis	Qeja Araba	Μ	40



23	Workinesh G/Michael	Qeja Araba	F	45
24	Wodajo W/Yesus	Qeja Araba	Μ	35
25	Abeto Haile	Qeja Araba	Μ	42
26	Bezabih W/Yesus	Qeja Araba	Μ	46
27	Assefa Beyene	Qeja Araba	Μ	50
28	Beyene Abadiga	Qeja Araba	Μ	65
29	Kichirasha W/Senbet	Qeja Araba	Μ	70
30	Berhanu G/Mariam	Qeja Araba	Μ	65
31	Tadesse Tegegn	keyakello	Μ	55
32	Bekele Zewde	keyakello	Μ	35
33	G/Mariam W/Gebreal	keyakello	Μ	56
34	Aselefech Ambo	keyakello	F	50
35	Gezahegn W/Mariam	keyakello	Μ	45
36	Melaku Mammo	keyakello	Μ	50
37	Gebabo G/Michael	keyakello	Μ	45
38	Weynitu Bekele	keyakello	F	28
39	Abeto Motto	keyakello	Μ	48
40	Ashebir G/Medhin	keyakello	Μ	45

Annex 4: Meteorological data at Bonga/Kaffa station (source: NMA)

a)	Monthly	total	rain	fall	in	mm
	· · J					

		•										
year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1988	87.9	89.9	35.8	119.7	135.4	223.1	NA	286.8	213.1	219.7	23.7	42.2
1989	42.2	38.5	128.6	201.8	97.9	109.3	179.7	205	169.6	146.3	34.3	118
1990	60.6	134.6	138.3	143	254.4	173.4	189.6	233.5	216	74.4	85.5	65.2
1991	73.2	50.2	126.7	226.1	202.3	220	194.2	264.1	201.5	53.4	52	51.8
1992	88.3	NA	102.2	103.6	155.6	257.8	191.5	194.9	159.3	285	99.9	59.1
1993	138.7	89.8	99.3	250	276.8	244.9	178	121.2	202.8	183.1	11.4	2.7
1994	10.2	9.1	71.6	179.4	245.7	NA	236	139.9	126.3	46.2	111.6	19.1
1995	0	42	52.3	158.9	153.4	160.8	172.6	214.4	223.3	56.8	31.6	151.8
1996	45.5	36.6	155.4	202	188.9	159.6	158	178.3	214	93.6	94.8	21.7
1997	86.2	12	133.5	231.7	205.9	212.7	181.8	146	138.4	239.9	248.2	135.9
1998	128.2	47.6	64.7	173.4	223.1	217	207.5	260.4	192.3	154.2	14.5	0
1999	NA	6	108.1	174.6	181.9	138.2	165.1	121.9	138	162.7	23	22.2
2000	6.3	4.6	101.4	194.3	214.1	161.6	232.1	135.1	147.5	260.4	38.7	28.9
2001	NA	67.5	119.4	NA	NA	192.5	178.3	197.3	195.7	118.1	<b>69.7</b>	6.4
2002	36.1	22	172.5	131.1	102.2	253.2	142.1	159	166.4	158.8	33.1	115.7
2003	47.2	23.3	51.5	213.3	47.7	352.1	462.9	433.4	314.3	26.8	46.4	48.7
2004	95.4	16.1	95	NA	NA	82.8	142.2	NA	NA	85.6	63.7	109.2
2005	33.7	39.5	158	163.5	319.4	202.1	172.5	178.9	184.7	140	89.7	0
2006	31.2	68.5	155.8	88.6	NA	185.7	287.9	206.4	183.7	148.1	NN	108.7
2007	NA	30.2	NA	198.9	295.1	276.5	NA	NA	NA	NA	NA	NA



$-\gamma$ $-\gamma$ $-\gamma$ $-\gamma$ $-\gamma$ $-\gamma$ $-\gamma$ $-\gamma$												
year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1988	13	12.7	14	14.3	13.1	12.1	NA	14.3	12.6	12.4	13.3	9.1
1989	9.1	10.2	11.7	13.7	13.9	13.5	13.9	13.1	13.5	12.3	12.1	12.7
1990	10.4	12.9	13	14	14.4	14.2	13.4	13.5	13.3	12.2	11.6	10.2
1991	12.1	11	12.7	11.2	10.8	10.2	10.3	13	12.9	12.2	11.9	9.8
1992	8.7	10.8	12.2	11.1	12.5	11	11	10.3	10.9	11	12.2	12
1993	11.3	10.6	12	12.5	12.6	12.7	11.3	11.7	12.2	12.6	10.5	8.2
1994	9	10.8	13	13	13.9	NA	13.7	13.7	12.6	8.3	10.1	9.2
1995	8.8	10.8	10.4	12.5	13.1	12.3	11.4	11.6	12.6	9.7	9.4	11
1996	11.5	11.1	11.1	9.6	10.7	10.1	10.5	11	11.5	11.9	10.8	10.2
1997	10.8	10	12.2	12.8	13	13.1	12.7	NA	NA	NA	NA	NA
1998	NA	12.2	12.3	11.4	11.3	12.1	11.8	11.9	11.4	12.1	9.6	8.2
1999	8.8	10.2	11.9	11.9	11.5	11.9	11.3	11.6	12.3	12.7	9.8	9.2
2000	9.5	7.8	12	12.3	12.5	12.9	12.9	13.6	12.9	13.3	12	8.9
2001	NA	11.9	12.2	NA	NA	13.2	12.6	13.4	13.1	13.3	12.3	11.5
2002	11.8	10.1	12	13.9	13.4	13	13.2	12.9	13.2	12.8	12.7	14.1
2003	10.8	11.7	12.2	13.5	14.2	12	10.9	10.8	11.5	10.2	10.1	10.5
2004	10.5	10.6	12.5	15	NA	14.4	13	14	13.7	11.8	11.1	13.9
2005	11.4	11.4	13.3	NA	13	14.5	14	13.3	14.1	13.2	10.8	8
2006	11.8	12.3	13.1	14.1	13.2	14.1	14.1	15	13.9	14.3	13	13
2007	NA	13.3	NA	14.8	14.7	14.5	NA	NA	NA	NA	NA	NA

b) Mean maximum temperature in degree Celsius

## c) Mean minimum temperature in degree Celsius

/						U						
year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1988	27.2	27	28.6	28.1	27	25.7	NA	25.8	25.6	26.6	28.3	28.3
1989	28.3	27.8	28	26.5	27.2	26.2	24	24	24.7	26.7	27.9	26.8
1990	28.2	26.8	27.6	28.1	27.9	26.2	26	26.7	25.9	28.7	28.6	29.3
1991	28.6	29.6	28.4	27.8	27.7	27.3	25.6	25.8	26.7	27.7	28	27.8
1992	27.9	27.9	29.2	28.2	28.3	26.2	25.8	25.2	25.8	26.5	28	27.9
1993	26.8	27	28.5	27.1	27.7	27.4	26.3	27.2	27.1	26.8	29.4	30.1
1994	31.2	32	29.3	28.5	26.8	NA	25.4	25.5	26.8	29.1	27	27.9
1995	30	29.5	29.8	28.1	27.2	27.1	25.1	25.7	26.7	27.7	29.5	27.7
1996	26.5	29.2	28.2	26.7	26.4	25.5	24.3	24.1	25.6	27.4	27.7	27.1
1997	27.4	29.7	29	26.7	25.9	25.6	25.2	25.6	27.1	26.5	26.4	27.9
1998	28	28.4	27.4	29.1	26.6	27.2	25	24.6	25.8	26.4	28.5	29.3
1999	29	28.5	28.6	27.6	26.1	26.4	24.6	25.1	26.4	26.4	28.3	28.9
2000	28.8	28.9	28.6	27.7	26.6	26.6	25.2	24.8	25.6	26.4	26.5	27.4
2001	NA	26.8	26	NA	NA	24.5	24.6	24.9	25.9	26.8	26.4	26.2
2002	27.1	28.5	26.6	26.7	26.3	25.9	26	25.3	25.9	26.8	26.7	25.8
2003	26.5	27.8	27.3	27.3	26.6	25	24.7	24.4	25.5	26.8	26.8	27.7
2004	27.3	23.9	30.3	28.8	21.5	25.3	25.9	25.6	25.7	26.6	27.7	27.6
2005	28.3	30.9	30.3	NA	26.3	26.1	25.1	26.3	26.5	26.9	27.5	28.2
2006	29	29.7	28.4	27.5	26.5	26.6	25.4	24.6	25.4	27.2	27.4	27.3
2007	NA	27.8	NA	28.2	27.1	26.3	NA	NA	NA	NA	NA	NA



	Kaf	Mnj	Orm	Had	Amh	Tig
MzR	3	1	15	7	18.75	7.5
Est	32.77	31.81	2	25	2	2
Ox	1	0.7	2	1	2	2
Cw	1.5	0.7	4.17	0.6	1.5	0.7
Shp	3.3	1.5	4	1.5	3	3
Hn	1.5	1.5	2.9	1.5	2	2
HoR	108	273.6	14.17	10.6	17	28
CoR	170	240	17	17	17	28
CaR	50	75	2	2	2	10
WpR	25	90.9	0	0	0	0
FID	1	1.5	1	1	1.08	1

Annex 5: Summery of the partial socio economics of the 86 households surveyed

Where: **MzR** is average maize production /year/quintals, **Est** is average Enset stands owned, **Ox** is average number of Oxen owned, **Cw** is average number of cows owned, **Hn** is average number of Hens owned, **Shp** is average number of sheep owned, **HoR** is average honey production/year/kilogram, **CoR** is average coffee production/year/ kilogram, **CaR** is average cardamom collected/year/kilogram, **WpR** is average wild pepper collected /year/kilogramme and **FlD** is average fuel wood consumed/day/woman load

No.	Type of product	Unit	Bonga shops	Bonga open market	Oufa	Wushwush
1	Charcoal	50 kg sack	14			
2	Firewood	Woman load	6 (splitted)	4 (unsplitted)	5	
3	Wild Coffee	K.g.	7	7-8	8	7
4	Forest Honey	K.g.	8	8	8	
5	Cardamom	K.g.	6-7	9	8	
6	Wild pepper	K.g.	4-5			

Annex 6: Market survey result by Taye Bekele (2003), price of NTFPs in Birr



